Viết phương trình tiếp tuyến của đường tròn \(\left( C \right):\,\,\,{x^2} + {y^2} = 25,\) biết rằng tiếp tuyến đó hợp với đường thẳng \(\Delta :\,\,x + 2y - 1 = 0\) một góc \(\alpha \) mà \(\cos \alpha  = \frac{2}{{\sqrt 5 }}.\)
A.\(\left[ \begin{array}{l}{d_1}:\,\,y + 5 = 0\\{d_2}:\,\,y - 5 = 0\end{array} \right.\)                          
B.\(\left[ \begin{array}{l}{d_1}:\,\,4x + 3y + 25 = 0\\{d_2}:\,\,4x + 3y = 25 = 0\end{array} \right.\)             
C.\(\left[ \begin{array}{l}{d_1}:\,\,y + 5 = 0\\{d_2}:\,\,4x + 3y + 25 = 0\end{array} \right.\)             
D.\(\left[ \begin{array}{l}{d_1}:\,\,y + 5 = 0\\{d_2}:\,\,y - 5 = 0\\{d_3}:\,\,4x + 3y + 25 = 0\\{d_4}:\,\,4x + 3y - 25 = 0\end{array} \right.\)

Các câu hỏi liên quan