Tìm min:
\(\dfrac{1}{1+1,5a}+\dfrac{1}{1+1,5b}\) với a, b > 0 và \(\sqrt{ab}=\dfrac{4}{3}\).
áp dụng cô si ta
\(\dfrac{1}{1+1,5a}\)+\(\dfrac{1}{1+1,5b}\)>=2\(\sqrt{\dfrac{1}{\left(1+1,5a\right)\left(1+1,5b\right)}}\)
a+b>= 2 căn ab mà căn ab =4/3 ta có căn ab= 4/3
suy ra a+b >= 8/3 => ab=16/9
(1+1,5a)(1+1,5b)=1+ 2,25ab+ 1,5(a+b)>=9
= >2\(\sqrt{\dfrac{1}{\left(1+1,5a\right)\left(1+1,5b\right)}}\)=< 2/3
=> 1/(1+1,5a) +1/(1+1,5b) >= 2/3
=> GTNN là 2/3
dấu bằng xảy ra khi và chỉ khi a =b =4/3
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
tìm tất cả các giá trị k để bpt: \(|x^2-x|\le x+k\) có 2011 nghiệm nguyên
Giúp mk vs mai mk có Toán rồi
1, Với a;b;c > 0 T/m a;b > 1 C/m :\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
2, với a;b > 1 C/m : \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
Cho đa thức f(x) thỏa mã điều kiện :
x.f(x-2) = (x-4) .f(x)
Chứng minh rằng đa thức f(x) có ít nhất 2 nghiệm .
giúp mình nhé các bạn !!!
cho 2 số tự nhiên a, b thỏa mãn đk a+b=2005 tìm gtln của tích ab
cho a,b,c > 0 và a+b+c=4
tính max A= \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Tìm giá trị nhỏ nhất của biểu thức A = \(3x^2-\dfrac{9x}{4}+\dfrac{3}{16x}\) với x dương.
Bài 1:Cho 0<=a;b;c<=2.a+b+c=3
CM:3<=a^3+b^3+c^3-3(a-1)(b-1)(c-1)<=9
Bài 2: Cho -1<=a;b;c<=2.a+b+c=0.CM:
a,a^2+b^2+c^2<=6
b,2abc<=a^2+b^2+c^2<=2abc+2
c,a^2+b^2+c^2<=8-abc
Chứng minh |a|-|b|< |a+b|<|a|+|b|
1)Cho 3 số a,b,c dương thỏa mãn ab+bc+ca=3abc.
tìm Max \(\dfrac{11a+4b}{4a^2-ab+2b^2}+\dfrac{11b+4c}{4b^2-bc+2c^2}+\dfrac{11c+4a}{4c^2-ca+2a^2}\)
2) cho a,b,c là các số dương thỏa mãn abc=1.CMR
\(\dfrac{1}{a^5+b^2+c^2}+\dfrac{1}{a^2+b^5+c^2}+\dfrac{1}{a^2+b^2+c^5}\le\dfrac{3}{a^2+b^2+c^2}\)
3) cho a,b,c>0 thỏa mãn a+b+c=3abc.CMR
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\ge3\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến