Phân tích thành nhân tử :
a) \(x^2-7\)
b) \(x^2-2\sqrt{2}x+2\)
c) \(x^2+2\sqrt{13}x+13\)
a) \(x^2-7=x^2-\left(\sqrt{7}\right)^2=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b) \(x^2-2\sqrt{2}x+2=x^2-2.x.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)^2\)
c) \(x^2+2\sqrt{13}x+13=x^2+2.x.\sqrt{13}+\left(\sqrt{13}\right)^2=\left(x+\sqrt{13}\right)^2\)
Bài 19 (Sách bài tập - tập 1 - trang 8)
Rút gọn các phân tử :
a) \(\dfrac{x^2-5}{x+\sqrt{5}}\) ( với \(xe-\sqrt{5}\))
b) \(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\) (với \(xe\pm\sqrt{2}\) )
Bài 21 (Sách bài tập - tập 1 - trang 8)
Rút gọn các biểu thức :
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
c) \(\sqrt{9x^2-2x}\) với \(x< 0\)
d) \(x-4+\sqrt{16-8x+x^2}\) với \(x>4\)
Bài 20 (Sách bài tập - tập 1 - trang 8)
So sánh (không dùng bảng số hay máy tính bỏ túi)
a) \(6+2\sqrt{2}\) và 9
b) \(\sqrt{2}+\sqrt{3}\) và 3
c) \(9+4\sqrt{5}\) và 16
d) \(\sqrt{11}-\sqrt{3}\) và 2
Tìm ĐKXĐ của:\(\sqrt{\dfrac{7+14x}{x^2+1}}\)
giúp mình vs mình thanks nhìu ạ(làm chi tiết ạ)
Bài 23 (Sách bài tập - tập 1 - trang 9)
Áp dụng quy tắc nhân các căn bậc hai, hãy tính :
a) \(\sqrt{10}.\sqrt{40}\)
b) \(\sqrt{5}.\sqrt{45}\)
c) \(\sqrt{52}.\sqrt{13}\)
d) \(\sqrt{2}.\sqrt{162}\)
Bài 24 (Sách bài tập - tập 1 - trang 9)
Áp dụng quy tắc khai phương một tích, hãy tính :
a) \(\sqrt{45.80}\)
b) \(\sqrt{75.48}\)
c) \(\sqrt{90.6,4}\)
d) \(\sqrt{2,5.14,4}\)
Bài 25 (Sách bài tập - tập 1 - trang 9)
Rút gọn rồi tính :
a) \(\sqrt{6,8^2-3,2^2}\)
b) \(\sqrt{21,8^2-18,2^2}\)
c) \(\sqrt{117,5^2-26,5^2-1440}\)
d) \(\sqrt{146,5^2-109,5^2+27.256}\)
Bài 26 (Sách bài tập - tập 1 - trang 9)
Chứng minh :
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
b) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Bài 27 (Sách bài tập - tập 1 - trang 9)
Rút gọn :
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 31 (Sách bài tập - tập 1 - trang 10)
Biểu diễn \(\sqrt{ab}\) ở dạng tích các căn bậc hai với \(a< 0;b< 0\)
Áp dụng tính \(\sqrt{\left(-25\right)\left(-64\right)}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến