A.\(2.\)B.\(4.\) C.\(3.\) D.\(1.\)
A.\(\dfrac{{x - 1}}{1} = \dfrac{y}{1} = \dfrac{{z - 1}}{{ - 1}}\)B.\(\dfrac{{x + 1}}{{ - 1}} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 2}}{1}\)C.\(\dfrac{{x - 1}}{1} = \dfrac{{y - 2}}{1} = \dfrac{{z - 3}}{{ - 1}}\) \(\)D.\(\dfrac{{x - 1}}{1} = \dfrac{y}{{ - 1}} = \dfrac{{z - 1}}{1}\)
A.\(1 + \pi \)B.\( - 1 + \pi \) C.\(1 + \dfrac{\pi }{2}\) D.\( - 1 + \dfrac{\pi }{2}\)
A.\(4 + \sqrt 3 \)B.\(2 + \sqrt 3 \) C.\(4 - \sqrt 3 \) D.3
A.B.C.D.
A.\(\dfrac{{3\sin x - \sin 3x}}{{12}} + C\)B.\(\dfrac{{3\cos x - \cos 3x}}{{12}} + C\)C.\({\sin ^3}x + C\)D.\(\sin x{\cos ^2}x + C\)
A.\(\int {{{\cos }^2}2xdx} = \dfrac{x}{2} + \dfrac{1}{8}\sin 4x + C\)B.\(\int {{{\sin }^2}2xdx} = \dfrac{x}{2} - \dfrac{1}{8}\sin 4x + C\)C.\(\int {\cos 4xdx} = \dfrac{1}{4}\sin 4x + C\)D.\(\int {{{\cos }^2}2xdx} = - {\cos ^2}2x + C\)
A.\(\int {\cos 3x\cos xdx} = \dfrac{1}{2}\left( {\dfrac{1}{4}\sin 4x + \dfrac{1}{2}\sin 2x} \right) + C\)B.\(\int {\sin 3x\cos xdx} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{4}\cos 4x + \dfrac{1}{2}\sin 2x} \right) + C\)C.\(\int {\sin 3x\cos xdx} = \dfrac{{ - 1}}{2}\left( {\dfrac{1}{4}\cos 4x + \dfrac{1}{2}\cos 2x} \right) + C\)D.\(\int {\sin x\cos xdx} = \dfrac{{ - \cos 2x}}{4} + C\)
A.\(\dfrac{1}{3}{\sin ^3}x - \dfrac{1}{5}{\sin ^5}x + C\)B.\( - \dfrac{1}{3}{\sin ^3}x + \dfrac{1}{5}{\sin ^5}x + C\)C.\({\sin ^3}x - {\sin ^5}x + C\)D.Đáp án khác
A.\(\cos x + {\sin ^2}x - \dfrac{{{{\sin }^3}x}}{3} - \dfrac{{{{\cos }^4}x}}{4} + C\)B.\(\sin x + \dfrac{{{{\sin }^2}x}}{2} - \dfrac{{{{\sin }^3}x}}{3} - \dfrac{{{{\cos }^4}x}}{4} + C\)C.\( - \dfrac{{{{\sin }^4}x}}{4} - \dfrac{{{{\sin }^3}x}}{3} + \dfrac{{{{\cos }^2}x}}{2} + \sin x + C\)D.\( - \dfrac{{{{\sin }^4}x}}{4} - \dfrac{{{{\sin }^3}x}}{3} + \dfrac{{{{\cos }^2}x}}{2} - \sin x + C\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến