Trong mặt phẳng với hệ tọa độ Oxy, cho điểm E(3; 4), đường thẳng d: \(x+y-1=0\) và đường tròn \((C):x^2+y^2+4x-2y-4=0\). Gọi M là điểm thuộc đường thẳng d và nằm ngoài đường tròn (C). Từ M kẻ các tiếp tuyến MA, MB đến đường tròn (C) (A, B là các tiếp điểm). Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Tìm tọa độ điểm M sao cho đường tròn (E) có chu vi lớn nhất.