Giải hệ phương trình \(\small \left\{\begin{matrix} \sqrt{x^2-x-y-1}.\sqrt[3]{x-y-1}=y+1\\ x+y+1+\sqrt{2x+y}=\sqrt{5x^2+3y^2+3x+7y} \end{matrix}\right.(x;y\in R)\)
Điều kiện: \(\small \left\{\begin{matrix} x^2-x-y-1\geq 0\\ 2x+y\geq 0\\ 5x^2+3y^2+3x+7y\geq 0 \end{matrix}\right.\) Trường hợp 1: \(\small x^2-x-y-1=0\Rightarrow y+1=0\Rightarrow x^2-x=0\Leftrightarrow \bigg \lbrack\begin{matrix} x=0\\ x=1 \end{matrix}\) Thử lại vào phương trình (2) thấy \(\small \left\{\begin{matrix} x=1\\ y=-1 \end{matrix}\right.\) thỏa mãn. Suy ra (1;-2) là nghiệm HPT.
Trường hợp 2: \(\small x^2-x-y-1> 0\)
\((1)\Leftrightarrow \sqrt[3]{x-y-1}=\frac{y-1}{\sqrt{x^2-x-y-1}}\) \(\Leftrightarrow \sqrt[3]{x-y-1}-1=\frac{y+1}{\sqrt{x^2-x-y-1}}-1\) \(\Leftrightarrow \frac{x-y-2}{\sqrt[3]{(x-y-1)^2}+\sqrt[3]{x-y-1}+1}=\frac{-(x+y+1)(x-y-2)}{\sqrt{x^2-x-y-1}+y+1}\) Ta có: \((x-y-2)\left [ \frac{1}{\sqrt[3]{(x-y-1)^2}+\sqrt[3]{x-y-1}+1}+\frac{x+y+1}{\sqrt{x^2-x-y-1}+y+1}\right ]\) = 0 \(\Leftrightarrow \bigg \lbrack\begin{matrix} x-y-2=0\\ \frac{1}{\sqrt[3]{(x-y-1)^2}+\sqrt[3]{x-y-1}+1}+\frac{x+y+1}{\sqrt{x^2-x-y-1}+y+1}=0\ \ (*) \end{matrix}\) Vì \(\left\{\begin{matrix} x^2-x-y-1>0\\ 2x+y\geq 0 \end{matrix}\right.\Rightarrow x^2-x> y+1\geq -2x+1\Rightarrow x^2+x-1> 0\) \(\Leftrightarrow \bigg \lbrack\begin{matrix} x> \frac{-1+\sqrt{5}}{2}\\ x< \frac{-1-\sqrt{5}}{2} \end{matrix}\) Nên \(y\geq -2x<1+\sqrt{5}\Rightarrow y+1> 2+\sqrt{5}>0\Rightarrow x+y+1>0\) Do đó PT (*) vô nghiệm. Suy ra y = x – 2. Thế vào phương trình (2) ta được: \(2x-1+\sqrt{3x-2}=\sqrt{8x^2-2x-2}\Leftrightarrow 2x-1+\sqrt{3x-2}=\sqrt{2(2x-1)^2+2(3x-2)}\) Điều kiện: \(x\geq \frac{2}{3}\) Đặt \(\left\{\begin{matrix} 2x-1=a\ (a\geq \frac{1}{3})\\ \sqrt{3x-2}=b\ (b\geq 0) \end{matrix}\right.\) Phương trình trở thành \(a+b=\sqrt{2a^2+2b^2}\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\Leftrightarrow (a-b)^2=0\Leftrightarrow a=b\) Từ đó ta có: \(2x-1=\sqrt{3x-2}\Leftrightarrow 4x^2-4x+1=3c-2\Leftrightarrow 4x^2-7x+3-9\) \(\Leftrightarrow \bigg \lbrack\begin{matrix} x=1\\ x=\frac{3}{4} \end{matrix}(T/M)\) +) x = 1 => y = -1. Thử lại HPT thấy thỏa mãn. +) \(x=\frac{3}{4}\Rightarrow y=-\frac{5}{4}\). Thử lại HPT không thỏa mãn. Vậy hệ phương trình có nghiệm (x;y) =(1;-1)