Bài 1: cho x, y, z >0.
Tìm GTNN của \(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\)
Bài 2: Cho x>=4. CMR:
\(S=x^2+\dfrac{18}{\sqrt{x}}>=25\)
Bài 1:
Áp dụng bđt Schwarz:
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
dấu "=" xảy ra khi \(\dfrac{x^2}{x^2+2yz}=\dfrac{y^2}{y^2+2xz}=\dfrac{z^2}{z^2+2xy}=\dfrac{1}{3}\Leftrightarrow x=y=z=1\)
vậy P đạt GTNN bằng 1 <=> x=y=z=1
Bài 2:
\(x\ge4\Rightarrow\left\{{}\begin{matrix}x^2\ge16\left(1\right)\\\dfrac{18}{\sqrt{x}}\ge9\left(2\right)\end{matrix}\right.\)
cộng theo vế (1) và (2), ta được: \(x^2+\dfrac{18}{\sqrt{x}}\ge25\) hay \(S\ge25\left(đpcm\right)\)
Cho x+y =1 .Tính giá trị nhỏ nhất của biểu thức:
A =\(\sqrt{x}+\sqrt{y}\)
Tìm GTNN của \(\dfrac{1}{x^2+\sqrt{3}}\)
GIẢI PHƯƠNG TRÌNH
x3_x2_x = \(\dfrac{1}{3}\)
giải nhanh giùm mình với
Giải phương trình
\(\sqrt{x^2-3x-7}-\sqrt{1-x}=0\)
Tính
\(\dfrac{2\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{2}{\sqrt{6}+\sqrt{10}}\)
a) \(\sqrt{3x-4}+\sqrt{4x+1}=-16x^2-8x+1\)
b) \(\sqrt{x}+2\sqrt{x+3}=7-\sqrt{x^2+3}\)
c) \(x^2-6x+26=6\sqrt{2x+1}\)
d)\(\sqrt{2006x^2-2005}+\sqrt{2005x^2-2004}=\sqrt{2006^2+2x-2003}+\sqrt{2005x^2+x-2002}\)
Giải phương trình: \(x^2+2x+3=\left(x^2+x+1\right)\left(x^2+x+4\right)\)
@Hung nguyen ; @nguyen van tuan ,-..help vs
Cho \(x>0,y>0\)và \(x+y\le\frac{4}{3}\)
Tìm MIN: \(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)
giải phương trình \(\sqrt{8+\sqrt{x-3}}+\sqrt{5-\sqrt{x-3}}=5\)
Tính giá trị của biểu thức \(\dfrac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}\)khi x =\(3-2\sqrt{2}\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến