\(x^3y+xy^3=xy\left(x^2+y^2\right)\le\dfrac{\left(x^2+y^2\right)}{2}\left(x^2+y^2\right)\)\(=\dfrac{\left(x^2+y^2\right)^2}{2}\). Áp dụng bất đẳng thức: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) ta suy ra:\(x^4+y^4\ge\dfrac{\left(x^2+y^2\right)^2}{2}\). Theo tính chất bắc cầu của bất đẳng thức ta suy ra: \(x^4+y^4\ge x^3y+xy^3\).