Cho hai biểu thức : M= (\(\sqrt{8}\)- 4\(\sqrt{2}+\sqrt{40}\)).\(\sqrt{2}\) và N= \(\dfrac{1}{\sqrt{5}+2}\)
a) Rút gọn M và N
b) Tính M+N
a, \(M=\left(\sqrt{8}-4\sqrt{2}+\sqrt{40}\right)\sqrt{2} \) \(=\sqrt{16}-4\sqrt{4}+\sqrt{80}\\ =4-8+\sqrt{16.5}\\ =4\sqrt{5}-4\) \(N=\dfrac{1}{\sqrt{5}+2}=\dfrac{\sqrt{5}-2}{5-4}=\sqrt{5-2}\)
b, \(M+N=4\sqrt{5}-4+\sqrt{5}-2=5\sqrt{5}-6\)
Cho a, , c dương thỏa mãn: \(a^2+b^2+c^2=1\)
Tìm min \(T=a+b+c+\dfrac{1}{abc}\)
tìm x \(\sqrt{9\left(x-1\right)}=21\) \(\sqrt{4\left(x-1\right)^2}-6=0\) \(\sqrt{\left(x-5\right)^2}=8\)
\(\sqrt{\left(2x-1\right)^2}=3\)
\(\sqrt{\left(2x+3\right)^2}=3\)
\(\sqrt{x^2-4x+4}=2x-3\)
Tìm x:
³\(\sqrt{1-2x^2\:}\) + 3 = 0
Giải phương trình : \(\sqrt{x-2}+\sqrt{10-x}=4.\)
Tính giá trị của biểu thức :
\(\dfrac{1}{2+\sqrt{3}}\)+\(\dfrac{1}{2-\sqrt{3}}\)
rút gọn biểu thức
\(\dfrac{1}{\sqrt{x}+1}+\dfrac{x}{\sqrt{x}-x}\)
\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
Cho 3 số x, y, z dương TM: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\). CMR:
\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
giải phương trình :
\(\sqrt{10-x}\) + \(\sqrt{x+3}\) = 5
giải phương trình
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)
cho biểu thức.\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\). Hãy tính tổng S=x+y
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến