$\dfrac{{BD}}{{AB}} = k \Rightarrow \dfrac{{EC}}{{AC}} = k.$ (k>0)
⇒$\dfrac{{MK}}{{AI}} = k$ Ta có: \(\begin{array}{l} 2\overrightarrow {MK} + \overrightarrow {MD} + \overrightarrow {ME} = 2\overrightarrow {MI} \\ \Leftrightarrow 2\overrightarrow {MK} + \overrightarrow {MD} + \overrightarrow {ME} = \overrightarrow {MB} + \overrightarrow {MC} \\ \Leftrightarrow 2\overrightarrow {MK} = \overrightarrow {MB} - \overrightarrow {MD} + \overrightarrow {MC} - \overrightarrow {ME} \\ \Leftrightarrow 2\overrightarrow {MK} = \overrightarrow {DB} + \overrightarrow {EC} \\ \Leftrightarrow 2.k\overrightarrow {AI} = k\overrightarrow {AB} + k\overrightarrow {AC} \\ \Leftrightarrow 2.\overrightarrow {AI} = \overrightarrow {AB} + \overrightarrow {AC} \\ \Leftrightarrow 2.\overrightarrow {AI} = 2\overrightarrow {AI} \,\,\left( {luôn\,đúng} \right) \Rightarrow đpcm \end{array}\)