cho tam giác ABC có A(1 , 2) , B(-2 , 6) , C(9 , 8) . Tìm tập hợp điểm M thỏa mãn : 3 nhân giá trị tuyệt đối của ( vector MA + vector MB ) = 2 nhân giá trị tuyệt đối của ( vector MA + vector MB + vector MC )
Gọi M(x,y) là điểm cần tìm
\(\overrightarrow{MA}+\overrightarrow{MB}=(-1-2x;8-2y)\)
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=(8-3x;16-3y)\)
Theo giả thiết \(3|\overrightarrow{MA}+\overrightarrow{MB}|=2|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|\), suy ra
\(3\sqrt{(-1-2x)^2+(8-2y)^2}=2\sqrt{(8-3x)^2+(16-3y)^2}\)
\(\Leftrightarrow 9(4x^2+4y^2+4x-32y+65)=4(9x^2+9y^2-48x-96y+320)\)
\(\Leftrightarrow 228x+96y-695=0\)
Vậy tập các điểm M cần tìm là đường thẳng 228x+96y-695=0
Bài 1.57 (SBT trang 46)
Cho tam giác ABC. Gọi M, N, P là những điểm được xác định như sau :
\(\overrightarrow{MB}=3\overrightarrow{MC};\overrightarrow{NC}=3\overrightarrow{NA};\overrightarrow{PA}=3\overrightarrow{PB}\)
a) Chứng minh \(2\overrightarrow{OM}=3\overrightarrow{OC}-\overrightarrow{OB}\) với mọi điểm O
b) Chứng minh hai tam giác ABC và MNP có cùng trọng tâm
Viết phương trình tổng quát của đường thẳng đi qua điểm M(4; 0) và N(0; -1)
Cho \(a^2+b^2=2\) . CMR \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Bài 1.37 (SBT trang 43)
Viết vectơ \(\overrightarrow{u}\) dưới dạng \(\overrightarrow{u}=x\overrightarrow{i}+y\overrightarrow{j}\) khi biết tọa độ của \(\overrightarrow{u}\) là :
\(\left(2;-3\right);\left(-1;4\right);\left(2;0\right);\left(0;-1\right);\left(0;0\right)\)
\(5.\frac{AB}{X}+5.\frac{2}{3}.\frac{AB}{X}=AB\)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có tâm đường tròn ngoại tiếp tam giác ABC là I(-2;1) và thỏa mãn điều kiện \(\widehat{AIB}=90^0\), chân đường cao kẻ từ A đến BC là D(-1;-1), đường thẳng AC đi qua điểm M(-1;4). Tìm tọa độ các đỉnh A,B biết rằng đỉnh A có hoành độ dương.
help me pls :3 :3
\(2(x^2+2)= {5\ \sqrt{x^3+1} }\)
\(2x^2 +5x-1 = { 7 \sqrt{x^3-1}}\)
tìm x,y,z nguyên
x2+y2+z2-xy-3y-2z+4=0
giải pt: \(x^4+2x^3-4x^2-2x+1=0\)
Giải hệ phương trình :
\(\begin{cases}x^2\left(x-3\right)-y\sqrt{y-3}=-2\\3\sqrt{x-2}=\sqrt{y\left(y+8\right)}\end{cases}\) \(\left(x,y\in R\right)\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến