Chứng minh b+c-a/2a+a-b+c/2b+a+b-c/2c >= 3/2
1) Cho \(x,y,z\ge1\), chứng minh: a) \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\) (xét hiệu) b)\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
2) Cho a, b, c > 0, chứng minh: \(\dfrac{b+c-a}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
3) Cho a, b, c là 3 cạnh tam giác. Chứng minh: \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)