Có 30 tấm thẻ được đánh số thứ tự từ số 1 đến số 30 mỗi tấm một số. Chọn ngẫu nhiên 10 tấm thẻ. Tính xác suất để chọn được 5 tấm thẻ mang số lẻ, 5 tấm mang số chẵn trong đó có đúng 1 tấm thẻ mang số chia hết cho 10
gọi\(\Omega\) là không gian mẫu để rút ra 10 tấm thẻ trong 30 tấm==>n(\(\Omega\))=C1030 =30045015
gọi A là biến cố "lấy 10 tấm thẻ trong đó có 5 tấm mang số lẻ, 5 tấm chẵn trong đó có 1 tấm chia hết cho 10"
nx: có 30 tấm đánh số từ 1->30 ==->15 tấm lẻ, 15 tấm chẵn, có 3 tấm chứa số 10, 20,30 là chia hết cho 10
- trường hợp rút 5 tấm lẻ là :C515 =3003 cách
- TH rút 5 tấm chẵn trong đó có 1 tấm chia hết cho 10 là
3xC412 =1485 cách
=======> n(A)=1485x3003=4459455 cách====>P(A)=99/667
Cho tứ giác lồi ABCD. Lấy các cạnh AB, CD làm đáy, dựng ra ngoài hai tam giác đều ABE, CDF. Lấy các cạnh BC, DA làm đáy, dựng vào trong hai tam giác đều BCG, DAH (tam giác BCG và tứ giác ABCD nằm về cùng một phía của đường thẳng BC, tam giá DAH và tứ giác ABCD nằm về cùng một phía của đường thẳng DA). Chứng minh rằng tứ giác EGFH là một hình bình hành
Cho lập phương ABCD.A'B'C'D' có độ dài các cạch bằng 1. Xét M trên cạnh AD và N trên canh BB' sao cho \(\frac{AM}{MD}=\frac{B'N'}{NB}\)
Chứng minh răng \(MN\perp A'C\)
Cho các số tự nhiên sau: 1, 2, 5, 6, 7, 9. Hỏi lập được bao nhiêu số tự nhiên có 3 chữ số mà có mặt chữ số 2.
Cho tứ diên đều ABCD có các cạnh bằng a. Gọi H là hình chiếu của A trên mặt phẳng (BCD) và O là trung điểm đoạn thẳng AH. Chứng minh rằng các đường thẳng OB, OC và OD đôi một vuông góc.
Cho tứ diện ABCD có AB=CD, BC=DA. Gọi M, N theo thứ tự là trung điểm của CA, BD.
Chứng minh rằng MN là đoạn vuông góc chung của các đường thẳng CA và BD
Cho sina=\(\frac{1}{3}\) và 0<\(\frac{\pi}{2}\) Tính sin(a+\(\frac{\pi}{3}\))
Cho 1 đa giác đều 12 đỉnh \(A_1A_2A_3A_4-A_{12}\) nội tiếp đường tròn (O). Chọn ngẫu nhiên 4 đỉnh của đa giác đó. Tính xác suất để 4 đỉnh được chọn tạo ra thành 1 hình chữ nhật
6. giai pt
1+sinx+cosx+sin2x+cos2x=0
Cho tứ giác ABCD có AB song song với CD. Các đường thẳng AC, BD cắt nhau ở E và các đường thẳng AD, BC cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm cạnh AB, CD. Chứng minh rằng E, F, M, N cùng nằm trên một đường thẳng.
Tìm n \(\in\) Z để tích 2 phân số \(\frac{11}{n-2}\) ( n khác 2 ) và \(\frac{n}{7}\) có giá trị là 1 số nguyên.
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến