Giải hệ phương trình: \(\left\{{}\begin{matrix}x+y+z=1\\\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=64\end{matrix}\right.\)
Ta có: \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=1+\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{xyz}\)