`a)|x|=0`
`→x=0`
`b)|3x-5|=0`
`→3x-5=0`
`→3x=0+5`
`→3x=5`
`→x=5/3`
`c)|2x+1|-1/2=-3/7`
`→|2x+1|=-3/7+1/2`
`→|2x+1|=-6/14+7/14`
`→|2x+1|=1/14`
`→`\(\left[ \begin{array}{l}2x+1=\dfrac{1}{14}\\2x+1=\dfrac{1}{14}\end{array} \right.\)
`→`\(\left[ \begin{array}{l}2x=\dfrac{1}{14}-1\\2x=\dfrac{-1}{14}-1\end{array} \right.\)
`→`\(\left[ \begin{array}{l}2x=\dfrac{-13}{14}\\2x=\dfrac{-15}{14}\end{array} \right.\)
`→`\(\left[ \begin{array}{l}x=\dfrac{-13}{14}:2\\x=\dfrac{-15}{14}:2\end{array} \right.\)
`→`\(\left[ \begin{array}{l}x=\dfrac{-13}{28}\\x=\dfrac{-15}{28}\end{array} \right.\)
`d)3.|4x-1|-2,5=19,5`
`→3.|4x-1|=19,5+2,5`
`→3.|4x-1|=22`
`→|4x-1|=22/3`
`→`\(\left[ \begin{array}{l}4x-1=\dfrac{22}{3}\\4x-1=\dfrac{-22}{3}\end{array} \right.\)
`→`\(\left[ \begin{array}{l}4x=\dfrac{22}{3}+1\\4x=\dfrac{-22}{3}+1\end{array} \right.\)
`→`\(\left[ \begin{array}{l}4x=\dfrac{25}{3}\\4x=\dfrac{-19}{3}\end{array} \right.\)
`→`\(\left[ \begin{array}{l}x=\dfrac{25}{3}:4\\x=\dfrac{-19}{3}:4\end{array} \right.\)
`→`\(\left[ \begin{array}{l}x=\dfrac{25}{12}\\x=\dfrac{-19}{12}\end{array} \right.\)
`e)|2x-1|=-(-5,6)`
`→|2x-1|=5,6`
`→`\(\left[ \begin{array}{l}2x-1=5,6\\2x-1=-5,6\end{array} \right.\)
`→`\(\left[ \begin{array}{l}2x=5,6+1\\2x=-5,6+1\end{array} \right.\)
`→`\(\left[ \begin{array}{l}2x=6,6\\2x=-4,6\end{array} \right.\)
`→`\(\left[ \begin{array}{l}x=6,6:2\\x=-4,6:2\end{array} \right.\)
`→`\(\left[ \begin{array}{l}x=3,3\\x=-2,3\end{array} \right.\)
`f)|x|=x`
`→x≥0` với `∀x`