Đáp án:
\(\left[ \begin{array}{l}
x = 1\\
x = - 1,536973768
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ne 0\\
2{x^3} + \dfrac{2}{x} - 3x - \dfrac{3}{x} + 2 = 0\\
\to 2{x^3} - 3x - \dfrac{1}{x} + 2 = 0\\
\to 2{x^4} - 3{x^2} + 2x - 1 = 0\\
\to 2{x^4} - 2{x^3} + 2{x^3} - 2{x^2} - {x^2} + x + x - 1 = 0\\
\to 2{x^3}\left( {x - 1} \right) + 2{x^2}\left( {x - 1} \right) - x\left( {x - 1} \right) + \left( {x - 1} \right) = 0\\
\to \left[ \begin{array}{l}
x - 1 = 0\\
2{x^3} + 2{x^2} - x + 1 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
x = - 1,536973768
\end{array} \right.\left( {TM} \right)
\end{array}\)