Cho tam giác ABC. Gọi I là giao điểm của hai tia phân giác hai góc A và B. Qua I vẽ đường thẳng song song với BC, cắt AB tại M, cắt AC tại N. Chứng minh rằng: MN = BM + CN.
Ba phân giác của tam giác cùng đi qua một điểm nên CI là tia phân giác của góc C.
Vì MN // BC nên \(\widehat {{C_1}} = \widehat {{I_2}}\) (hai góc so le trong) mà \(\widehat {{C_1}} = \widehat {{C_2}} \) nên \(\widehat {{C_2}} = \widehat {{I_2}}\)