Độ lớn lực kéo về: \(\left| {{F_{kv}}} \right| = m\left| a \right|\) Công thức độc lập với thời gian: \(\frac{{{v^2}}}{{{\omega ^2}}} + \frac{{{a^2}}}{{{\omega ^4}}} = {A^2}\) Cơ năng của vật: \({\rm{W}} = \frac{1}{2}m{\omega ^2}{A^2}\)Giải chi tiết:Khi lực kéo về có độ lớn 0,8 N và \(0,5\sqrt 2 \,\,N\), ta có: \(\left\{ \begin{array}{l}\left| {{a_1}} \right| = \frac{{\left| {{F_{kv1}}} \right|}}{m} = \frac{{0,8}}{{0,1}} = 8\,\,\left( {m/s} \right)\\\left| {{a_2}} \right| = \frac{{\left| {{F_{kv2}}} \right|}}{m} = \frac{{0,5\sqrt 2 }}{{0,1}} = 5\sqrt 2 \,\,\left( {m/s} \right)\end{array} \right.\) Áp dụng công thức độc lập với thời gian cho hai thời điểm, ta có: \(\begin{array}{l}\left\{ \begin{array}{l}\frac{{{v_1}^2}}{{{\omega ^2}}} + \frac{{{a_1}^2}}{{{\omega ^4}}} = {A^2} \Rightarrow \frac{{0,{6^2}}}{{{\omega ^2}}} + \frac{{{8^2}}}{{{\omega ^4}}} = {A^2}\\\frac{{{v_2}^2}}{{{\omega ^2}}} + \frac{{{a_2}^2}}{{{\omega ^4}}} = {A^2} \Rightarrow \frac{{{{\left( {0,5\sqrt 2 } \right)}^2}}}{{{\omega ^2}}} + \frac{{{{\left( {5\sqrt 2 } \right)}^2}}}{{{\omega ^4}}} = {A^2}\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}\omega = 10\,\,\left( {rad/s} \right)\\A = 0,1\,\,\left( m \right)\end{array} \right.\end{array}\) Cơ năng của con lắc là: \({\rm{W}} = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2}.0,{1.10^2}.0,{1^2} = 0,05\,\,\left( J \right)\)