Phân tích đa thức thành nhân tử:
a, \(36a^2-\left(a^2+9\right)^2\)
\(=\left(6a\right)^2-\left(a^2+9\right)^2\)
\(=\left(6a-a^2-9\right)\left(6a+a^2+9\right)\)
b, \(\left(a+3b\right)^2-\left(a^2+9\right)^2\)
\(=\left(a+3b-a^2-9\right)\left(a+3b+a^2+9\right)\)
c, \(9\left(2a-x\right)^2-4\left(3a-x\right)^2\)
\(=\left[3\left(2a-x\right)\right]^2-\left[2\left(3a-x\right)\right]^2\)
\(=\left(6a-3x\right)^2-\left(6a-2x\right)^2\)
\(=\left(6a-3x-6a+2x\right)\left(6a-3x+6a-2x\right)\)
\(=\left(-x\right)\left(12a-5x\right)\)
e, \(x^4+x^3+x+1\)
\(=\left(x^4+x^3\right)+\left(x+1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x^3+1\right)\left(x+1\right)\)