a ) \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x=2000\) và \(x=\dfrac{1}{5}\)
b ) \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\sqrt{13}\end{matrix}\right.\)
Vậy \(x=0\) và \(x=\sqrt{13}\)
c ) \(x+5x^2=0\)
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\1+5x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-\dfrac{1}{5}\)
d ) \(\left(x+1\right)=\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy \(x=0\) và \(x=-1\)
e ) \(x^3+x=0\)
\(\Leftrightarrow x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\\left(loại\right)\end{matrix}\right.\)
Vậy \(x=0\)