Tìm giá trị nhỏ nhất của biểu thức
B=x2+x+1
C=x2+y2-2x+6y+2
+) ta có : \(B=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow B_{min}=\dfrac{3}{4}\) dấu "=" xảy ra khi \(x=\dfrac{-1}{2}\)
vậy giá trị nhỏ nhất của \(B\) là \(\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)
+) ta có : \(C=x^2+y^2-2x+6y+2=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)-8\)
\(=\left(x-1\right)^2+\left(y+3\right)^2-8\ge-8\)
\(\Rightarrow C_{min}=-8\) dấu "=" xảy ra khi \(x=1;y=-3\)
vậy giá trị nhỏ nhất của \(C\) là \(-8\) khi \(x=1;y=-3\)
Tìm GTLN của biểu thức
c)C = (2-x)(x+4)
d)\(\dfrac{7}{x^2-24x+215y}\)
Tính giá trị của A=\(27x^3\)-\(54x^2\)+36x+7
tại x=12
1.Tính:
a, (2-1)(2+1)(2\(^2\)+1)(2\(^4\)+1)(2\(^8\)+1)
b, 8 (3\(^2\)+1)(3\(^4\)+1)(3\(^8\)+1)(3\(^{16}\)+1)(3\(^{23}\)+1)- 3\(^{94}\)
2. So sánh
A=2009*2009
B=2008*2010
Chứng minh
A=-5x2+10-7<0
B=-x2+x-1/4<0
C=-4x2+4x-3<0
Tìm x, y biết : 9x^2 + 8y^2 - 12xy + 6x - 16y + 10 = 0
Với số nguyên dương n chẵn
CMR : \(20^n+16^n-3^n-1⋮323\)
Bai 1 : Tim gia tri nho nhat cua bieu thuc :
1, \(x^2-6x+6\)
2, \(3x^2-5x+2\)
3, \(5x^4+9x^2+13\)
4, \(x^2-5x+3\)
5, \(2x^2-5x-1\)
Tìm x biết
a) 5x - (4 - 2x + x2)( x + 1) + x(x - 1)(x+1) = 0
b) (4x2 + 2x + 1)(2x -1) - 4x(2x2 - 3) = 23
Cho x + y = 1. Tính giá trị của biểu thức
P = 2(x3 + y3) - ( x2 + y2)
Chứng tỏ rằng biểu thức sau không phụ thuộc vào x:
a) A = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)
b) B = (x - 1)3 - x3 + 3x2 - 3x - 1
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến