Đáp án:
$(x;y)=\left \{ (-1;2),(-3;0) \right \}$
Giải thích các bước giải:
$xy - x + 2y = 3$
$\Leftrightarrow x(y-1)+2(y-1)=1$
$\Leftrightarrow (x+2)(y-1)=1=1.1=(-1).(-1)$
TH1: $\left\{\begin{matrix}
x+2=1 & & \\
y-1=1 & &
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
x=-1 & & \\
y=2 & &
\end{matrix}\right.$
TH2: $\left\{\begin{matrix}
x+2=-1 & & \\
y-1=-1 & &
\end{matrix}\right.\Rightarrow \left\{\begin{matrix}
x=-3 & & \\
y=0 & &
\end{matrix}\right.$
Vậy $(x;y)=\left \{ (-1;2),(-3;0) \right \}$