\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\) \(A=\left(x^3+3x^2+3x+1\right)-\left(x^2+6x+9\right)\left(x+1\right)-4x^2+8\) \(A=\left(x^3+3x^2+3x+1\right)-\left(x^3+x^2+6x^2+6x+9x+9\right)+4x^2+8\) \(A=x^3+3x^2+3x+1-x^3-x^2-6x^2-6x-9x-9+4x^2+8\) \(A=-12x\) Thay \(x=-\dfrac{1}{6}\) vào \(A\) ta có: \(A=-12\times\left(-\dfrac{1}{6}\right)=2\) Vậy \(A=2\) khi \(x=-\dfrac{1}{6}\)
\(B=\left(x-1\right)^3-+\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\) \(B=\left(x^3-3x^2+3x-1\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)+\left(3x^2-48\right)\) \(B=x^3-3x^2+3x-1-x^3+2x^2-4x-2x^2+4x-8+3x^2-48\) \(B=3x-57\) Thay \(x=-2\) vào \(B\) ta có: \(B=3\times\left(-2\right)-57=-6-57=-63\) Vậy \(B=-63\) khi \(x=-2\)