Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a; BCD = 600 SA vuông góc với mặt phẳng (ABCD) hai mặt phẳng (SCB) và (SCD) vuông góc với nhau. Tính thể tích khối chóp S.ABCD và khoảng cách từ C đến mặt phẳng (SBD) theo a.
Theo giả thiết ABCD là hình thoi cạnh a và \(BCD=60^0\Rightarrow \Delta BCD\) đều và diện tích hình thoi ABCD là \(S_{ABCD}=\frac{a^2\sqrt{3}}{2}\) Ta có \(\left\{\begin{matrix} BD\perp AC\\ BD\perp SA \end{matrix}\right.\Rightarrow BD\perp (SAC)\Rightarrow BD\perp SC\) Gọi \(O=AC\cap BD\), trong (SAC) kẻ \(OM\perp SC,M\in SC\Rightarrow SC\perp (MBD)\) Do đó BMD là góc giữa (SCB) và (SCD) \(\Rightarrow BMD=90^0\Rightarrow OM=\frac{1}{2}.BD=\frac{a}{2}\) Ta thấy \(\Delta SAC\sim \Delta OMC\Rightarrow \frac{SA}{OM}=\frac{AC}{MC}\) \(\Rightarrow SA=\frac{AC.OM}{\sqrt{OC^2-OM^2}}=\frac{a\sqrt{3}.\frac{a}{2}}{ \sqrt{\frac{3a^2}{4}-\frac{a^2}{4}}}=\frac{a\sqrt{6}}{2}\) Thể tích khối chóp cần tìm là \(V=\frac{1}{2}.SA.S_{ABCD}=\frac{a^3\sqrt{2}}{4}\) Ta có O là trung điểm của AC nên \(d (C, (SBD)) =d (A, (SBD))\) Trong (SAC), kẻ \(AH\perp SO,H\in SO\) mà \(AH\perp BD\) nên \(AH\perp (SBD)\) \(\Rightarrow AH=d(A,(SBD))\) Trong tam giác SAO vuông tại A có \(\frac{1}{AH^2}=\frac{1}{AS^2}+\frac{1}{AO^2}=\frac{2}{3a^2}+\frac{4}{3a^2} =\frac{2}{a^2}\) \(\Rightarrow AH=\frac{a}{\sqrt{2}}\) Vậy khoảng cách từ C đến mặt phẳng (SBD) là \(\frac{a}{\sqrt{2}}\)