Cho \(log_315=a,log_310=b\) . Tính \(log_950\) theo a và b.
Ta có \(log_950=log_{3^2}50=\frac{1}{2}log_350\) \(log_350=log_3\frac{150}{3}=log_315+log_310-1=a+b-1\) Kết luận
Cho số phức z thỏa mãn điều kiện \(\frac{z-11}{z-2}=z-1\). Hãy tính \(\left | \frac{z-4i}{\bar{z}+2i} \right |\)
Help me!
Giả sử x, y, z là các số thực dương thỏa mãn x > y và xy + (x+y)z +z2 =1. Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{1}{4(x+y)^2}+\frac{1}{(x+z)^2}+\frac{1}{(y+z)^2}\)
Cho hình chóp S.ABC có các mặt ABC và SBC là những tam giác đều cạnh a. Góc giữa hai mặt phẳng (SBC) và (ABC) là 600. Hình chiếu vuông góc của S xuống (ABC) nằm trong tam giác ABC. Tính thể tích khối chóp S.ABC theo a và tính khoảng cách từ B đến mặt phẳng (SAC) theo a.
Hôm qua làm kiểm tra 1 tiết Toán, mình giải không biết đúng hay sai nữa!
Trong không gian với hệ tọa độ Oxyz cho 4 điểm A(1; 1; 0); B(1; 0; 2); C(2;0; 1), D(-1; 0; -3). Chứng minh A, B, C, D là 4 đỉnh của một hình chóp và viết phương trình mặt cầu ngoại tiếp hình chóp đó .
Hôm nay thầy em giao bài này về nhà mà em không có biết làm, mn giúp em vs!
Khảo sát sự biến thiên và vẽ đồ thị hàm số \(y = -x^3 + 3x+1\)
Làm toát mồ hôi mà vẫn không ra, giúp em vs!
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 4a, cạnh SA vuông góc với mặt phẳng đáy. Góc giữa cạnh SC và mặt phẳng (ABCD) bằng 600, M là trung điểm của BC, N là điểm thuộc cạnh AD sao cho DN = a. Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB và MN .
mn người ơi, giải giúp em vs, bài này khó quá!
Tìm khoảng đơn điệu của hàm số \(y=\sqrt{3x-5}+\sqrt{4x-3}\)
Cho \(x,y,z\in [0;2]\) thỏa mãn \(x+y+z=3\). Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{x^2+y^2+2}+\frac{1}{y^2+z^2+2}+\frac{1}{z^2+x^2+2}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Bài này phải làm sao mọi người?
Cho hình chóp S.ABCD có đáy ABCDlà hình chữ nhật với AB = a AD = a\(\sqrt{3}\). Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trọng tâm của tam giác ABC và SB tạo với mặt phẳng (ABCD) một góc 600. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SAvà CD.
Giải hệ phương trình \(\left\{\begin{matrix} x^2+xy+\sqrt{x}=2y^2-3y+\sqrt{y-1}+1\\ x^3+x+y-6=\sqrt{3x^2-x+y}-2\sqrt{y+2} \end{matrix}\right.\)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến