`c//`
`\sqrt{8-2\sqrt{7}}`
`= \sqrt{7-2\sqrt{7}+1}`
`= \sqrt{(\sqrt{1})^2(\sqrt{7})^2-2\sqrt{7}+(\sqrt{1})^2}`
`= \sqrt{(1 . \sqrt{7}-1)^2}`
`= 1 . \sqrt{7} - 1`
`= \sqrt{7} - 1`
`d//`
`\sqrt{7-4\sqrt{3}}`
`= \sqrt{3-4\sqrt{3}+4}`
`= \sqrt{(\sqrt{1})^2(\sqrt{3})^2-4\sqrt{3}+(\sqrt{4})^2}`
`= \sqrt{(1.\sqrt{3}-2)^2}`
`= 2 - 1 . \sqrt{3}`
`= 2 - \sqrt{3}`
`g//`
`\sqrt{28-10\sqrt{3}}`
`= \sqrt{3-10\sqrt{3}+25}`
`= \sqrt{(\sqrt{1})^2(\sqrt{3})^2-10\sqrt{3}+(\sqrt{25})^2}`
`= \sqrt{(1 . \sqrt{3}-5)^2}`
`= \sqrt{(5 - 1 . \sqrt{3})^2}`
`= 5 - 1 . \sqrt{3}`
`= 5 - \sqrt{3}`
`h//`
`\sqrt{46+6\sqrt{5}}`
`= \sqrt{45+6\sqrt{5}+1}`
`= \sqrt{(\sqrt{9})^2(\sqrt{5})^2+6\sqrt{5}+(\sqrt{1})^2}`
`= \sqrt{(3\sqrt{5}+1)^2}`
`= 3\sqrt{5}+1`