Giải phương trình :
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Với mọi x thuộc tập xác định, theo bất đẳng thức Bunhiacopxki, ta có
\(\sqrt{x-2}+\sqrt{4-x}=1\sqrt{x-2}+1\sqrt{4-x\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=2}\)
còn
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
do đó
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\) \(\Leftrightarrow\) \(\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\\left(x-3\right)^2+2=2\end{cases}\)
\(\Leftrightarrow\) \(x=3\)
Vậy phương trình đã cho có nghiệm duy nhất \(x=3\)
Đề kiểm tra - Đề 3 - Câu 1 (SBT trang 200)
Trong mặt phẳng Oxy, cho tam giác ABC có AB = AC, \(\widehat{BAC}=90^0\), trung điểm của BC là M(1; -1) và trọng tâm tam giác ABC là \(G\left(\dfrac{2}{3};0\right)\)
a) Tìm tọa độ điểm A
b) Tìm tọa độ điểm B và C
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC
cho (P) : y = ax2 + bx + 2 . Tìm a và b biết (P) có trục đối xứng x = \(\frac{5}{6}\) và (P) đi qua M ( 2;4 )
Bài 21 (SBT trang 194)
Rút gọn các biểu thức :
a) \(\dfrac{\sin2\alpha+\sin\alpha}{1+\cos2\alpha+\cos\alpha}\)
b) \(\dfrac{4\sin^2\alpha}{1-\cos^2\dfrac{\alpha}{2}}\)
c) \(\dfrac{1+\cos\alpha-\sin\alpha}{1-\cos\alpha-\sin\alpha}\)
d) \(\dfrac{1+\sin\alpha-2\sin^2\left(45^0-\dfrac{\alpha}{2}\right)}{4\cos\dfrac{\alpha}{2}}\)
giải phương trình
x|x-2|+|2x+5|=8
\(\sqrt{x+1}\)=5-\(\sqrt{2x+3}\)
cho hệ phương trình
x-my=2-4m
mx+y=3m+1
1, chứng minh rằng hệ pt luôn có nghiệm với mọi giá trị của m
2,giả sử\(x_0\);\(y_o\)là nghiệm của hệ phương trình
chứng minh rằng \(x^2_0+y^2_0-5\left(x_o+y_0\right)\)luôn bằng một hằng số
Lập bảng xét dấu
\(f\left(x\right)=x^2-x+1\)
Giải các hệ phương trình
a) x + 3y + 2z = 8
2x + 2y + z = 6
3x + y + z = 6
b) x - 3y + 2z = -7
-2x + 4y + 3z = 8
3x + y - z = 5
Bài 17 (SBT trang 193)
Cho \(\sin\alpha=\dfrac{8}{17},\sin\beta=\dfrac{15}{17},\) với \(0< \alpha< \dfrac{\pi}{2};0< \beta< \dfrac{\pi}{2}\)
Chứng minh rằng :
\(\alpha+\beta=\dfrac{\pi}{2}\)
câu 5: cho a+b+c=0 và a,b,c khác 0 tính giá trị B= a^2 /(a^2 -b^2 -c^2) +b^2/(b^2 -c^2-a^2) + c^2/(c^2 -b^2 -a^2) cách trình bày nữa ạ
Cho các bất đẳng thức, trong các khẳng định sau, khẳng định nào đúng với mọi giá trị của x?
a) 8x > 4x; b) 4x > 8x;
c) 8x2 > 4x2; d) 8 + x > 4 + x.
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến