Viết vectơ \(\overrightarrow{u}\) dưới dạng \(\overrightarrow{u}=x\overrightarrow{i}+y\overrightarrow{j}\) khi biết tọa độ của \(\overrightarrow{u}\) là :
\(\left(2;-3\right);\left(-1;4\right);\left(2;0\right);\left(0;-1\right);\left(0;0\right)\)
\(\overrightarrow{u}\left(2;3\right)=2\left(1;0\right)+3\left(0;1\right)=2\overrightarrow{i}+3\overrightarrow{j}\). \(\overrightarrow{u}\left(-1;4\right)=-\left(1;0\right)+4\left(0;1\right)=-\overrightarrow{i}+4\overrightarrow{j}\). \(\overrightarrow{u}\left(2;0\right)=2.\left(1;0\right)+0.\left(0;1\right)=2\overrightarrow{i}+0\overrightarrow{j}\). \(\overrightarrow{u}\left(0;-1\right)=0.\left(1;0\right)-1.\left(0;1\right)=0\overrightarrow{i}-\overrightarrow{j}\). \(\overrightarrow{u}\left(0;0\right)=0.\left(1;0\right)+0.\left(0;1\right)=0\overrightarrow{i}+0\overrightarrow{j}.\)
\(5.\frac{AB}{X}+5.\frac{2}{3}.\frac{AB}{X}=AB\)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có tâm đường tròn ngoại tiếp tam giác ABC là I(-2;1) và thỏa mãn điều kiện \(\widehat{AIB}=90^0\), chân đường cao kẻ từ A đến BC là D(-1;-1), đường thẳng AC đi qua điểm M(-1;4). Tìm tọa độ các đỉnh A,B biết rằng đỉnh A có hoành độ dương.
help me pls :3 :3
\(2(x^2+2)= {5\ \sqrt{x^3+1} }\)
\(2x^2 +5x-1 = { 7 \sqrt{x^3-1}}\)
tìm x,y,z nguyên
x2+y2+z2-xy-3y-2z+4=0
giải pt: \(x^4+2x^3-4x^2-2x+1=0\)
Giải hệ phương trình :
\(\begin{cases}x^2\left(x-3\right)-y\sqrt{y-3}=-2\\3\sqrt{x-2}=\sqrt{y\left(y+8\right)}\end{cases}\) \(\left(x,y\in R\right)\)
cân bằng phương trình: Fe + 02 => Fe3O4 CH4 + O2 => Co2 + H2O
Bài 2.13 (SBT trang 91)
Cho hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\) đều khác vectơ \(\overrightarrow{0}\). Tích vô hướng \(\overrightarrow{a}.\overrightarrow{b}\) khi nào dương, khi nào âm và khi nào bằng 0 ?
Xét vị trí tương đối của cặp đường thẳng sau đây:
d1 4x – 10y + 1 = 0 ; d2 : x + y + 2 = 0
cho hình vuông ABCD có cạnh bằng a. Gọi M là trung điểm của BC và N là điiểm nằm trên CD sao cho NC=2ND. tính vectoAM nhân vecto AN
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến