Chứng minh rằng với mọi \(\alpha\) làm cho biểu thức \(\dfrac{\sin\alpha+\tan\alpha}{\cos\alpha+\cot\alpha}\) có nghĩa, biểu thức đó không thể là một số âm ?
Ta có: \(\dfrac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}=\dfrac{sin\alpha+\dfrac{sin\alpha}{cos\alpha}}{cos\alpha+\dfrac{cos\alpha}{sin\alpha}}\)\(=\dfrac{sin\alpha cos\alpha+sin\alpha}{cos\alpha}:\dfrac{cos\alpha sin\alpha+cos\alpha}{sin\alpha}\) \(=\dfrac{sin\alpha cos\alpha+sin\alpha}{cos\alpha}.\dfrac{sin\alpha}{cos\alpha sin\alpha+cos\alpha}\) \(=\dfrac{sin^2\alpha\left(cos\alpha+1\right)}{cos^2\alpha\left(sin\alpha+1\right)}>0\) nếu biểu thức có nghĩa.