Trong mp Oxy cho tam giác ABC có A(4;3), B(-1,2), C(1;-1)
Tìm tọa độ điểm D sao cho tứ giác ABCD là hbh.
Chứng minh : ABCD thẳng hàng
*) giả sử điểm D có tọa độ là \(D\left(x_D;y_D\right)\)
\(\Rightarrow\overrightarrow{DC}\left(1-x_D;-1-y_D\right)\) và \(\overrightarrow{AB}\left(-5;-1\right)\)
ta có : ABCD là hình bình hành khi và chỉ khi \(\overrightarrow{DC}=\overrightarrow{AB}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x_D=-5\\-1-y_D=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_D=6\\y_D=0\end{matrix}\right.\)
vậy điểm D sao cho tứ giác ABCD là hình bình hành có tọa độ là \(D\left(6;0\right)\)
*) ý tiếp theo mình bó tay
ta có : tứ giác ABCD là hình bình hành \(\Rightarrow\) không thể nào ABCD thẳng hàng
cho a,b,c là các số thực dương
cmr \(\dfrac{a^5}{bc}+\dfrac{b^5}{ca}+\dfrac{c^5}{ab}\ge a^3+b^3+c^3\)
với a ,b,c>0
\(\sqrt[3]{4\left(a^3+b^3\right)}+\sqrt[3]{4\left(b^3+c^3\right)}+\sqrt[3]{4\left(c^3+a^3\right)}\ge2\left(a+b+c\right)\)
√x+3 + √5-x = 3√(5-x)(x+3) -8
cái dấu trong bài toán là dấu căn nha
tống các ngiệm của phương trình căn 3x-3 - căn 5-x - căn 2x-4 =0
Cho 3 điểm A(-1;2),B(1;1),C(2;-1)
Tìm điểm F trên Oy sao cho tam giác AFC cân tại F
giải hệ phương trình \(\left\{{}\begin{matrix}2x^2-3x=y^2-2\\2y^2-3y=x^2-2\end{matrix}\right.\)
\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Cho hình bình hành ABCD có tâm là O và gọi G là trọng tâm tam giác ABC
a. Chứng minh \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=\overrightarrow{BA}\)
b. Xác định điểm M sao cho: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}=\overrightarrow{AD}\)
tìm m để phương trình: \(\sqrt{x+6\sqrt{x-9}}+m\sqrt{x+2\sqrt{x-9}-8}\)=\(x+\dfrac{3m+1}{2}\) có hai nghiệm \(x_1,x_2\) sao cho \(x_1< 10< x_2\)
Cho 3 điểm A,B,C phân biệt có bao nhiêu vecto khác vecto không có điểm đầu và điểm cuối là các điểm đó?
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến