Cho các số dương x,y,z thỏa mãn \(xy+yz+zx=1\) Chứng minh rằng \(\dfrac{x}{1+yz}+\dfrac{y}{1+zx}+\dfrac{z}{1+xy}\ge\dfrac{3\sqrt{3}}{4}\)
Ta có: \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)
\(VT=\dfrac{x}{1+yz}+\dfrac{y}{1+xz}+\dfrac{z}{1+xy}\)
\(=\dfrac{x^2}{x+xyz}+\dfrac{y^2}{y+xyz}+\dfrac{z^2}{z+xyz}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3xyz}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\dfrac{\left(x+y+z\right)\left(xy+yz+xz\right)}{3}}\)
\(=\dfrac{3\left(x+y+z\right)}{4}\). Cần chứng minh:
\(\dfrac{3\left(x+y+z\right)}{4}\ge\dfrac{3\sqrt{3}}{4}\Leftrightarrow x+y+z\ge\sqrt{3}\)
BĐT cuối đúng vì \(x+y+z\ge\sqrt{3\left(xy+yz+xz\right)}=\sqrt{3}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
Ps: nospoiler
Tìm nghiệm nguyên lớn nhất của bất phương trình: \(\dfrac{x+4}{x^2-9}\)- \(\dfrac{2}{x+3}\)< \(\dfrac{4x}{3x-x^2}\)
\(^{3^{n+2}-2^{n+2}+3^n-2^n⋮10}\)nhanh cần gấp 15 phút
Cho hai số dương a và b thỏa mãn a + b = 1. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)
19 x 27 + 47 x 51 + 19 x 20 + 47 x 30
ai nhanh mik tik
Đơn giản biểu thức sau:
\(F=sin\left(\pi+\alpha\right)-cos\left(\dfrac{\pi}{2}-\alpha\right)+cot\left(2\pi-\alpha\right)+tan\left(\dfrac{3\pi}{2}-\alpha\right)\)
1+2+3+-+101=?
Viết tập hợp con của M={ a;b;c}
Cho a,b,c,d là số dương. Cmr
a/ \(\left(\dfrac{a}{b^3}+\dfrac{b}{c^3}+\dfrac{c}{d^3}+\dfrac{d}{a^3}\right)\left(a+b\right)\left(b+c\right)\ge16\)
b/ \(\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge4\)
Tính nhanh
A=13/29+1/2+13/29×1/3-13/28×5/6
cho hàm số y = 4 - x. Giá trị của x để y = 5 là
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến