Điều kiện của tham số m để hàm số $f(x)=\frac{1}{3}{{x}^{3}}-m{{x}^{2}}-x+m+1$ có khoảng cách giữa các điểm cực đại, cực tiểu là nhỏ nhất khi?A. $m=1.$ B. $m=0.$ C. $m=2.$ D. $m=-1.$
Cho hàm số $y=-\frac{1}{3}{{x}^{3}}+m{{x}^{2}}+(m-2)x-\frac{1}{3}(1)$ với m là tham số thực. Điều kiện của m để hàm số (1) đồng biến trên đoạn có độ dài bằng 4 là?A. $m=2,m=-3.$ B. $m=3,m=-2.$ C. $m=1,m=2.$ D. $m=-1,m=2.$
Giá trị lớn nhất của hàm số trên đoạn làA. B. 0 C. D.
Hình vẽ sau là đồ thị hàm số nào? A. $y=\frac{{2x-1}}{{x-1}}$ B. $y=\frac{{{{x}^{2}}+3x}}{{x-2}}$ C. $y=\frac{{x-2}}{{x+1}}$ D. $y=\frac{1}{{2x-2}}$
Cho hàm số . Trên đoan [0 ; 1], hàm số f(x)A. đạt giá trị nhỏ nhất bằng 0, đạt giá trị lớn nhất bằng . B. đạt giá trị nhỏ nhất bằng 0, đạt giá trị lớn nhất bằng . C. không đạt giá trị nhỏ nhất, không đạt giá trị lớn nhất. D. đạt giá trị nhỏ nhất bằng -3, đạt giá trị lớn nhất bằng 3.
Cho hàm số $\displaystyle y=\frac{{ax+b}}{{cx+d}}$ với$a>0$ có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng? A. $b>0,\,c<0,\,d<0$ B. $b>0,\,c>0,\,d<0$ C. $b<0,\,c>0,\,d<0$ D. $b<0,\,c<0,\,d<0$
Giá trị lớn nhất của hàm số $y=3{{\sin }^{2}}x+4\sin x\cos x-5{{\cos }^{2}}x+2$ là?A. $2\sqrt{5}+1.$ B. $2\sqrt{5}-1.$ C. $2\sqrt{5}.$ D. 1.
Số nghiệm của phương trình ${{\sin }^{2}}x+\cos x=m,\forall m\in \left( {-1;1} \right)$ là?A. 0. B. 1. C. 2. D. 3.
Tập nghiệm của bất phương trình log0,3(4x2) ≥ log0,3(12x - 5) là :A. B. C. D.
Điều kiện của tham số m để hàm số $y=\frac{{m{{x}^{2}}-1}}{x}$ có hai điểm cực trị A, B và độ dài đoạn AB ngắn nhất là?A. $\frac{1}{2}.$ B. $1.$ C. $2.$ D. $-\frac{1}{2}.$
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến