Gọi z là một nghiệm của phương trình \({z^2} - z + 1 = 0\). Giá trị của biểu thức \(M = {z^{2019}} + {z^{2018}} + \dfrac{1}{{{z^{2019}}}} + \dfrac{1}{{{z^{2018}}}} + 5\) bằng A.\(5.\) B.\(2.\) C.\(7.\) D.\( - 1\)
Phương pháp giải: - Giải phương trình bậc hai tìm một nghiệm \(z\). - Tính \({z^3}\), từ đó phân tích \({z^{2019}},\,\,{z^{2018}}\) theo \({z^3}\) và tính giá trị biểu thức \(M\). Giải chi tiết:Ta có \({z^2} - z + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\\z = \dfrac{1}{2} - \dfrac{{\sqrt 3 }}{2}i\end{array} \right.\). Chọn 1 nghiệm của phương trình trên là \(z = \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}i\), ta có \({z^3} = - 1\).