Giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + mx - 1\) có hai cực trị \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 6\) là A.\(3\) B.\(1\) C.\( - 3\) D.\( - 1\)
Phương pháp giải: - Điều kiện để hàm số có 2 điểm cực trị là phương trình \(y' = 0\) có hai nghiệm phân biệt. - Áp dụng định lí Vi-ét cho phương trình bậc hai \(a{x^2} + bx + c = 0\) là: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a}\\{x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\). - Sử dụng biến đổi \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), từ đó giải phương trình tìm \(m\). Giải chi tiết:TXĐ: \(D = \mathbb{R}\). Ta có: \(y' = 3{x^2} - 6x + m = 0\,\,\,\left( 1 \right)\) Để hàm số có 2 điểm cực trị thì phương trình (1) phải có 2 nghiệm phân biệt \( \Leftrightarrow \Delta = {6^2} - 4.3m = 36 - 12m > 0 \Leftrightarrow m < 3.\) Khi đó hai điểm cực trị của hàm số là \({x_1},\,\,{x_2}\), chính là hai nghiệm phân biệt của phương trình (1), áp dụng định lí Ta-lét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}.{x_2} = \dfrac{m}{3}\end{array} \right.\). Khi đó ta có: \(x_1^2 + x_2^2 = 6\) \(\begin{array}{l} \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 6\\ \Leftrightarrow {2^2} - 2.\dfrac{m}{3} = 6\\ \Leftrightarrow m = - 3.\end{array}\) Chọn C.