Tìm GTNN của biểu thức x^2y/x-1+y^2z/y-1+z^2y/z-1
cho x,y,z >1 và x+y+z=6.
Tìm GTNN của: \(\dfrac{x^2y}{x-1}+\dfrac{y^2z}{y-1}+\dfrac{z^2y}{z-1}\)
Sửa đề:
\(\dfrac{x^2y}{x-1}+\dfrac{y^2z}{y-1}+\dfrac{z^2x}{z-1}=\dfrac{x^2y^2}{xy-y}+\dfrac{y^2z^2}{yz-z}+\dfrac{z^2x^2}{zx-x}\)
\(\ge\dfrac{\left(xy+yz+zx\right)^2}{xy+yz+zx-6}\)
Đặt \(t=xy+yz+zx>x+y+z=6\) thì ta có
\(\dfrac{t^2}{t-6}=24+\dfrac{t^2-24t+144}{t-6}=24+\dfrac{\left(t-12\right)^2}{t-6}\ge24\)
Vậy GTNN là 24 đạt dược khi \(x=y=z=2\)
Chứng minh a^2+b^2+ab < 1 biết a^3+b^3=a - b
Cho các số dương a &b thoả mãn :\(a^3+b^3=a-b\)
CMR: \(a^2+b^2+ab< 1\)
Chứng minh b+c-a/2a+a-b+c/2b+a+b-c/2c >= 3/2
1) Cho \(x,y,z\ge1\), chứng minh: a) \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\) (xét hiệu) b)\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}+\dfrac{1}{1+z^2}\ge\dfrac{3}{1+xyz}\)
2) Cho a, b, c > 0, chứng minh: \(\dfrac{b+c-a}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
3) Cho a, b, c là 3 cạnh tam giác. Chứng minh: \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Tìm x biết a>=2 và x
các cặp bất phương trình sau có tương đương không vì sao
a)x\(\ge2\)và x\(\le2\)
b)x+1<0 và (x+1)2<0
Tìm x biết (3x-1)^2-(2x+3)^2=0
Tìm x, biết:
a) \(\left(3x-1\right)^2-\left(2x+3\right)^2=0\)
b)\(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
Viết x^2+10+26+y2+2y thành tổng hai bình phương
viết tổng sau của dạng của tổng hoặc hiệu hai Bình phương. x2+10+26+y2+2y. z2-6z+5-t2-4t. x2-2xy+2y2+2y+1. 4x2-12x-y2+2y+b. 1/4a2+2ab2+4b2 1/9-2/3y4+y8 Làm cho mình bài này
Tìm m để m^2-2(m-1)x+2m-3=0 có 2 nghiệm thỏa |x1-x2|=5
tìm các giá trị của m để phương trình : \(x^2-2\left(m-1\right)x+2m-3=0\)có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(\left|x_1-x_2\right|=5\) (với m là tham số)
Chứng minh mọi ước nguyên tố của n!-1 > n
c/m:mọi ước nguyên tố của \(n!-1\) đều lớn hơn n
Tìm x biết 2x - 5 + 3( x-1) > 2
2x - 5 + 3( x-1)>2
Tìm x biết x-5/x-3 < 0
giải và biểu diễn tập ngiệm bất phương trình sau lên trục số
\(\dfrac{x-5}{x-3}< 0\)
Tìm GTNN của biểu thức M=(1+1/a)^2+(1+1/b)^2 biết a+b=1
Cho a,b>0 và a+b=1. Tìm GTNN của biểu thức:
M=(\(1+\dfrac{1}{a}\))2+(\(1+\dfrac{1}{b}\))2
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến