tính tổng : S = 12-22+32-42+52-62+...+20112-20122
\(S=1^2-2^2+3^2-4^2+...+2011^2-2012^2\)
\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+...+\left(2011^2-2012^2\right)\)
\(=-3-7-...-4023\)
\(=-\frac{1006.4026}{2}=-2025078\)
chứng minh định lý 3 bài cấp số cộng ( đại số 11 nâng cao , chương 3 )
Giả sử (un) là một cấp số cộng. Với mỗi số nguyên dương n, gọi Sn là tổng n số hạng đầu tiên của nó (Sn=u1+u2+...+un). Khi đó ta có: Sn=\(\frac{\left(u_1+u_n\right)n}{2}\)
Tam giác ABC có \(\cot A,\cot B,\cot C\) theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng \(a^2,b^2,c^2\) theo thứ tự đó cũng lập thành một cấp số cộng ?
Cho tam giác ABC thỏa mãn điều kiện \(\tan A.\tan B=6\) và \(\tan A.\tan C=3\). Hãy chứng tỏ \(\tan A,\tan B,\tan C\) theo thứ tự lập thành cấp số cộng ?
Cho tam giác ABC có \(\cot\frac{A}{2},\cot\frac{B}{2},\cot\frac{C}{2}\) theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng 3 cạnh a, b, c đó cũng lập thành cấp số cộng ?
Cho tam giác ABC, có 3 cạnh a, b, c, theo thứ tự đó lập thành một cấp số cộng. Hãy chứng minh rằng : \(\cot\frac{A}{2}.\cot\frac{C}{2}=3\)
Chứng minh rằng, nếu \(\log_xa;\log_yb;\log_zc\) tạo thành một cấp số cộng (theo thứ tự đó) thì :
\(\log_by=\frac{2\log_ax\log_cz}{\log_ax+\log_cz}\) (\(0 < x, y, z, a, b, c\)\(e1\))
Cho một cấp số cộng \(u_1,u_2,u_3,u_4\).Chứng minh rằng nếu \(\left|u_1u_4-u_2u_3\right|\le6\) thì biểu thức \(A=\sqrt{\left(x-u_1\right)\left(x-u_2\right)\left(x-u_3\right)\left(x-u_4\right)+9}\) có nghĩa với mọi x ?
Với giá trị nào của a, ta có thể tìm được các giá trị của x để các số : \(5^{x+1}+5^{1-x}.\frac{a}{2},25^x+25^{-x}\), lập thành một cấp số cộng ?
Tính tổng : \(S=\left(2+\frac{1}{2}\right)^2+\left(4+\frac{1}{4}\right)^2+...+\left(2^n+\frac{1}{2^n}\right)^2\)
Xen vào giữa 2 số 4 và 40 bốn số để được một cấp số cộng. Tìm 4 số đó ?
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến