a) \(tan^2\alpha+cot^2\alpha=\left(tan\alpha+cot\alpha\right)^2-2tan\alpha cot\alpha\) \(=m^2-2\). b) \(tan^3\alpha+cot^3\alpha=\left(tan\alpha+cot\alpha\right)\)\(\left(tan^2\alpha-tan\alpha cot\alpha+cot^2\alpha\right)\) \(=m\left(tan^2\alpha+cot^2\alpha-tan\alpha cot\alpha\right)\) \(=m\left(m^2-2-2\right)=m\left(m^2-3\right)\).