Lời giải:
Để cho gọn, đặt \(x^2=t(t\geq 0)\)
PT trở thành:
\((m-2)t^2-2(m+1)t+(2m-1)=0(*)\)
a) Để PT đã cho vô nghiệm thì thì \(\Delta'\) âm hoặc \((*)\) có nghiệm âm.
=========-
\(\Delta'=(m+1)^2-(m-2)(2m-1)<0\)
\(\Leftrightarrow -m^2+7m-1<0\)
\(\Leftrightarrow m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)
PT \((*)\) có nghiệm âm khi mà:
\(\left\{\begin{matrix} \Delta'=-m^2+7m-1\geq 0\\ t_1+t_2=\frac{2(m+1)}{m-2}<0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow \frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\)
Vậy để PT vô nghiệm thì \(\frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\) , \(m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)
b) Để PT đã cho có nghiệm duy nhất thì (*) có nghiệm duy nhất. Với nghiệm \((*)\) thu được duy nhất là \(t=k\geq 0\), nếu \(keq 0\Rightarrow \) PT đã cho có 2 nghiệm \(\pm \sqrt{k}\) (không thỏa mãn).
Do đó nếu PT đã cho có nghiệm duy nhất thì nghiệm đó phải là 0
\(\Rightarrow (m-2).0^4-2(m+1).0^2+2m-1=0\Leftrightarrow m=\frac{1}{2}\)
Thay vào thử lại thấy thỏa mãn.
Vậy \(m=\frac{1}{2}\)
c) Để PT đã cho có hai nghiệm thì \((*)\) có duy nhất một nghiệm dương, nghiệm còn lại âm. Khi đó:
\(\Delta'=-m^2+7m-1>0\) (1)
Và: \(t_1t_2<0\Leftrightarrow \frac{2m-1}{m-2}<0\Leftrightarrow \frac{1}{2}< m< 2\) (2)
Kết hợp (1); (2) suy ra \(\frac{1}{2}< m< 2\)
d)
PT ban đầu có ba nghiệm khi mà $(*)$ có một nghiệm bằng 0 và một nghiệm còn lại là dương.
\((*)\) có nghiệm 0 thì PT ban đầu cũng có nghiệm 0. Theo phần b ta suy ra \(m=\frac{1}{2}\). Thử lại ta thấy với \(m=\frac{1}{2}\) thì PT ban đầu có nghiệm 0 duy nhất. Do đó không tồn tại $m$ để PT có ba nghiệm.
e)
Để PT ban đầu có 4 nghiệm thì $(*)$ có hai nghiệm dương phân biệt. Điều này xảy ra khi mà:
\(\Delta'=-m^2+7m-1>0\) (1)và: \(\left\{\begin{matrix} t_1+t_2=\frac{2(m+1)}{m-2}>0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow m>2\) (2)
Từ (1); (2) suy ra \(2< m< \frac{7+3\sqrt{5}}{2}\)