- Gọi \(x\left( m \right),\,\,3x\left( m \right)\) lần lượt là chiều rộng, chiều dài của bể. Tính chiều cao của bể. - Tính tổng diện tích các mặt làm bê tông. - Sử dụng BĐT Cô-si: \(a + b + c \ge 3\sqrt[3]{{abc}}\,\,\left( {a,\,\,b,\,\,c > 0} \right)\). Dấu “=” xảy ra khi và chỉ khi \(a = b = c\).Giải chi tiết: Gọi \(x\left( m \right),\,\,3x\left( m \right)\) lần lượt là chiều rộng, chiều dài của bể, \(h\) là chiều cao của bể. Theo bài ra ta có: \(V = x.3x.h = 6 \Rightarrow h = \dfrac{6}{{3{x^2}}} = \dfrac{2}{{{x^2}}}\,\,\left( m \right)\). Khi đó tổng diện tích các mặt bể được làm bê tông là: \(2x.\dfrac{2}{{{x^2}}} + 2.3x.\dfrac{2}{{{x^2}}} + 2x.3x - x.3x.\dfrac{2}{9} = \dfrac{{16{x^2}}}{3} + \dfrac{{16}}{x}\) Áp dụng BĐT Cô-si ta có: \(\dfrac{{16{x^2}}}{3} + \dfrac{{16}}{x} = \dfrac{{16{x^2}}}{3} + \dfrac{8}{x} + \dfrac{8}{x} \ge 3\sqrt[3]{{\dfrac{{16{x^2}}}{3}.\dfrac{8}{x}.\dfrac{8}{x}}} = 8\sqrt[3]{{18}}\) Dấu “=” xảy ra khi \(\dfrac{{16{x^2}}}{3} = \dfrac{8}{x} \Leftrightarrow x = \sqrt[3]{{\dfrac{3}{2}}}\). Vậy số tiền ít nhất mà cô Ngọc cần bỏ ra là \(8\sqrt {18} {.10^6} \approx 21.000.000d\). Chọn B