Đáp án đúng: D
Phương pháp giải:
- Tính \(f'\left( x \right)\), xác định các nghiệm \({x_i} \in \left[ { - 2; - \dfrac{1}{2}} \right]\) của phương trình \(f'\left( x \right) = 0\).- Tính \(f\left( { - 2} \right),\,\,f\left( { - \dfrac{1}{2}} \right),\,\,f\left( {{x_i}} \right)\).- KL: \(\mathop {\min }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = \min \left\{ {f\left( { - 2} \right),\,\,f\left( { - \dfrac{1}{2}} \right),\,\,f\left( {{x_i}} \right)} \right\}\), \(\mathop {\max }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = \max \left\{ {f\left( { - 2} \right),\,\,f\left( { - \dfrac{1}{2}} \right),\,\,f\left( {{x_i}} \right)} \right\}\).Giải chi tiết:Ta có \(y' = 6{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \notin \left[ { - 2; - \dfrac{1}{2}} \right]\\x = - 1 \in \left[ { - 2; - \dfrac{1}{2}} \right]\end{array} \right.\).\(f\left( { - 2} \right) = - 5,\,\,f\left( { - \dfrac{1}{2}} \right) = - \dfrac{1}{2},\,\,f\left( { - 1} \right) = 0\).\( \Rightarrow \mathop {\min }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = - 5\), \(\mathop {\max }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = 0\).Vậy \(\mathop {\min }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ { - 2; - \dfrac{1}{2}} \right]} f\left( x \right) = - 5\).Chọn D