– Để giải các phương trình đưa được về ax + b = 0 ta thường biến đổi phương trình như sau:
+ Quy đồng mẫu hai vế và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng ax = c
+ Tìm x
Chú ý: Quá trình biến đổi phương trình về dạng ax = c có thể dẫn đến trường hợp đặc biệt là hệ số của ẩn bằng 0 nếu:
0x = c thì phương trình vô nghiệm S = Φ.
0x = 0 thì phương trình nghiệm đúng với mọi x hay vô số nghiệm: S = R.
Đề bài
Tìm chỗ sai và sửa lại các bài giải sau cho đúng:
a) 3x - 6 + x = 9 - x
<=> 3x + x - x = 9 - 6
<=> 3x = 3
<=> x = 1
b) 2t - 3 + 5t = 4t + 12
<=> 2t + 5t - 4t = 12 -3
<=> 3t = 9
<=> t = 3.
Lời giải chi tiết
a) Sai ở phương trình thứ hai chuyển vế hạng tử -6 từ vế trái sang vế phải, hạng tử -x từ vế phải sang vế trái mà không đổi dấu.
Giải lại: 3x - 6 + x = 9 - x
<=> 3x + x + x = 9 + 6
<=> 5x = 15
<=> x = 3
Vậy phương trình có nghiệm duy nhất x = 3
b) Sai ở phương trình thứ hai, chuyển vế hạng tử -3 từ vế trái sang vế phải mà không đổi dấu.
Giải lại: 2t - 3 + 5t = 4t + 12
<=> 2t + 5t - 4t = 12 + 3
<=> 3t = 15
<=> t = 5
Vậy phương trình có nghiệm duy nhất t = 5