lập mệnh đề phủ định của mệnh đề sau và xét tính đúng sai của nó :
P = "\(\exists x\in Q,3< x< \pi"\)
\(P="\forall x\in Q;3\ge x\ge\pi"\) mệnh đề phủ định này sai vì \(\dfrac{1}{2}\in Q\) nhưng \(\dfrac{1}{2}< 3\)
giải hệ \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{matrix}\right.\)
cho a,b,c thỏa \(\left\{{}\begin{matrix}a,b,c>0\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\end{matrix}\right.\) chứng minh rằng\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Cho a,b,c là số dương thỏa mãn \(a^2+b^2+c^2=1\) . Tìm GTLN của
A=\(\left(1+2a\right)\left(1+2bc\right)\)
Tìm GTNN của bt
a/ \(h\left(x\right)=x+\dfrac{3}{x}\) với \(x\ge2\)
b/ \(k\left(x\right)=2x+\dfrac{1}{x^2}\) với \(0< x\le\dfrac{1}{2}\)
Tìm x, biết:
a) 2x - [x - (- 3/4 - 4)]=13/16
b) |x-7|=x-7
c) |x-9|=9-x
Tìm GTNN của biểu thức
a/ \(f\left(x\right)=\dfrac{\left(x-1\right)^2}{x-2}\) với x>2
b/ \(g\left(x\right)=2x+\dfrac{1}{\left(x+1\right)^2}\) với x>-1
Chứng minh 1,\(x^4+5>x^2+4x\)
2, Nếu \(a\ge4,b\ge5,c\ge6,a^2+b^2+c^2=90\Rightarrow a+b+c\ge16\)
Câu 1. Giải các phương trình, hệ phương trình sau:
a. \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
b. \(\left\{{}\begin{matrix}x^2-xy-2=0\\x^2+y^2+2x+2y-2=0\end{matrix}\right.\) (x,y \(\in R\))
1Cho tam giác ABC và điểm M thõa mãn \(\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{AB}\)
TÌM VỊ TRÍ CỦA M
2 Cho tam giác ABC . Tập hợp điểm M thõa màn
a. \(\left|\overrightarrow{MB}-\overrightarrow{MC}\right|=\left|\overrightarrow{BM}-\overrightarrow{BA}\right|\)
B, VÉC TƠ MA+MB-MC=MD
Bài 7: Cho a, b, c ≥ 0 và a + b + c = 1. Chứng minh a + 2 b + c ≥ 4(1 – a)(1 – b)(1 – c)
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến