Định lí về phân tích nhân tử khi biết tất cả các nghiệm của đa thức:

Đa thức $P(x)$ được viết dưới dạng: $P(x)={{a}_{n}}{{x}^{n}}+{{a}_{n-1}}{{x}^{n-1}}+...+{{a}_{1}}x+{{a}_{0}}$ trong đó ${{a}_{n}}\ne 0$ là một đa thức bậc $n$ ký hiệu là $\deg P=n$.

$P(x)$ có nghiệm ${{x}_{1}},{{x}_{2}},...,{{x}_{n}}$ thì $P(x)={{a}_{n}}\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)...\left( x-{{x}_{n}} \right).$

Ví dụ 1:Hàm số $f(x)=\frac{1}{2}{{x}^{3}}+a{{x}^{2}}+bx+c$ có đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ lần lượt bằng $-3;-1;2.$ Tìm $f(x).$

Giải.Vì $f(x)$ là một đa thức bậc ba có ba nghiệm $-3;-1;2$ do đó $f(x)=\dfrac{1}{2}(x+3)(x+1)(x-2).$

Ví dụ 2:Đồ thị của hai hàm số $f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+\dfrac{1}{2}$ và $g(x)=d{{x}^{2}}+ex+\dfrac{3}{4}$ cắt nhau tại ba điểm phân biệt có hoành độ $-2;1;3.$ Tìm $h(x)=f(x)-g(x).$

Giải.Vì $h(x)=a{{x}^{3}}+(b-d){{x}^{2}}+(c-e)x-\frac{1}{4}$ là một đa thức bậc ba có ba nghiệm $-2;1;3$ do đó $h(x)=a(x+2)(x-1)(x-3).$

So sánh hệ số tự do của $h(x)$ ta có $-\dfrac{1}{4}=a(2)(-1)(-3)\Leftrightarrow a=-\dfrac{1}{24}.$ Do đó $h(x)=-\dfrac{1}{24}(x+2)(x-1)(x-3).$

Phân tích nhân tử cho đa thức bậc ba có chứa tham số

Đa thức bậc ba $P(x)=a{{x}^{3}}+b{{x}^{2}}+cx+d$ tìm được một nghiệm đẹp $x={{x}_{0}}$ khi đó $P(x)=a(x-{{x}_{0}})({{x}^{2}}+rx+s)$ để tìm nhân tử ${{x}^{2}}+rx+s$ ta thực hiện bằng máy tính bỏ túi như sau:

MODE 2 (Vào môi trường số phức)

Nhập $\dfrac{P(x)}{a(x-{{x}_{0}})}-{{x}^{2}}$ và CALC với $x=i(ENG)$ và tham số $m=1000$

Ví dụ 1:Phân tích thành nhân tử đa thức $P(x)={{x}^{3}}+(m+1){{x}^{2}}+({{m}^{2}}+2m-1)x-3{{m}^{3}}+3{{m}^{2}}+m-1.$

Giải. Nhập phương trình bậc ba ${{x}^{3}}+(m+1){{x}^{2}}+({{m}^{2}}+2m-1)x-3{{m}^{3}}+3{{m}^{2}}+m-1=0$ ẩn $x$ với $m=1000$ ta được một nghiệm đẹp $x=999=m-1.$

Vậy khi phân tích nhân tử thì $P(x)=(x-m+1)({{x}^{2}}+rx+s)$ ta tìm $rx+s$ như sau:

MODE 2

Nhập $\dfrac{{{x}^{3}}+(m+1){{x}^{2}}+({{m}^{2}}+2m-1)x-3{{m}^{3}}+3{{m}^{2}}+m-1}{x-m+1}-{{x}^{2}}$

CALC với $x=i(ENG);m=1000$ ta được kết quả $2000i+2999999=2mx+3{{m}^{2}}-1.$

Vậy $rx+s=2mx+3{{m}^{2}}-1.$ Do đó $P(x)=(x-m+1)({{x}^{2}}+2mx+3{{m}^{2}}-1).$

Phân tích nhân tử cho đa thức bậc bốn có chứa tham số

Đa thức bậc bốn $P(x)=a{{x}^{4}}+b{{x}^{3}}+c{{x}^{2}}+dx+e$ có nghiệm kép $x={{x}_{0}}$ khi đó $P(x)=a{{(x-{{x}_{0}})}^{2}}({{x}^{2}}+rx+s)$ để tìm nhân tử ${{x}^{2}}+rx+s$ ta thực hiện như sau:

MODE 2(Vào môi trường số phức)

Nhập $\dfrac{P(x)}{a{{(x-{{x}_{0}})}^{2}}}-{{x}^{2}}$ và CALCvới $x=i(ENG)$ và tham số $m=1000$

Ví dụ 1:Phân tích thành nhân tử đa thức $P(x)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}-(4{{m}^{3}}-3{{m}^{2}}+2m)x+3{{m}^{4}}-2{{m}^{3}}+{{m}^{2}}.$

Giải. Đa thức $P(x)$ có nghiệm kép $x=m$ do đó $P(x)={{(x-m)}^{2}}({{x}^{2}}+rx+s)$ ta tìm $rx+s$ như sau:

MODE 2

Nhập $\dfrac{{{x}^{4}}-{{x}^{3}}+{{x}^{2}}-(4{{m}^{3}}-3{{m}^{2}}+2m)x+3{{m}^{4}}-2{{m}^{3}}+{{m}^{2}}}{{{(x-m)}^{2}}}-{{x}^{2}}$

CALC với $x=i(ENG);m=1000$ ta được kết quả $1999i+2998001=(2m-1)x+3{{m}^{2}}-2m+1.$

Vậy $rx+s=(2m-1)x+3{{m}^{2}}-2m+1.$ Vậy $P(x)={{(x-m)}^{2}}({{x}^{2}}+(2m-1)x+3{{m}^{2}}-2m+1).$ 

Bài viết gợi ý: