Câu 1. Cho hàm số f(x) là hàm số trên R định bởi f(x) = x2 và x0 ÎR. Chọn câu đúng:

A. f/(x0) = x0                    B. f/(x0) = x02                        C. f/(x0) = 2x0.                   D. f/(x0) không tồn tại

Câu 2: Cho hàm số y = \[\frac{{{x}^{2}}+x}{x-2}\], đạo hàm của hàm số tại x = 1 là:

A. y/(1)= –4                     B. y/(1)= –3                          C. y/(1)= –2                       D. y/(1)= –5

Câu 3. Phương trình tiếp tuyến của đồ thị của hàm số y = (x+1)2(x–2) tại điểm có hoành độ x = 2 là:

A. y = –8x + 4                 B. y = –9x + 18.                   C. y = –4x + 4                   D. y = –8x + 18

Câu 4. Phương trình tiếp tuyến của đồ thị của hàm số y = x(3–x)2 tại điểm có hoành độ x = 2 là

A. y = –12x + 24             B. y = –12x + 26.                 C. y = 12x –24                  D. y = 12x –26

Câu 5. Điểm M trên đồ thị hàm số y =  x3 – 3x2 – 1 mà tiếp tuyến tại đó có hệ số góc k bé nhất trong tất cả các tiếp tuyến của đồ thị thì M, k là:

A. M(1; –3), k = –3.        B. M(1; 3), k = –3                C. M(1; –3), k = 3             D. M(–1; –3), k = –3

Câu 6. Cho hàm số y =\[\frac{{{x}^{2}}-2mx+m}{x-1}\]. Giá trị m để đồ thị hàm số cắt trục Ox tại hai điểm và tiếp tuyến của đồ thị tại hai điểm đó vuông góc là:

A. 3                                 B. 4                                      C. 5.                                  D. 7

Câu 7. Cho hàm số y =\[\frac{{{x}^{2}}+3x+3}{x+2}\], tiếp tuyến của đồ thị hàm số vuông góc với đường thẳng
3y – x + 6 là:

A. y = –3x – 3; y= –3x– 4.                                           B. y = –3x – 3; y= –3x + 4

C. y = –3x + 3; y= –3x–4                                             D. y = –3x–3; y=3x–4

Câu 8. Cho hàm số y = x3 – 6x2 + 7x + 5 (C), trên (C) những điểm có hệ số góc tiếp tuyến tại điểm nào bằng 2?

A. (–1; –9); (3; –1)          B. (1; 7); (3; –1).                  C. (1; 7); (–3; –97)            D. (1; 7); (–1; –9)

Câu 9. Tìm hệ số góc của tiếp tuyến với đồ thị y = tanx tại điểm có hoành độ x = \[\frac{\pi }{4}\]:

A. k = 1                           B. k =\[\frac{1}{2}\]           C. k = \[\frac{\sqrt{2}}{2}\]        D. 2.

Câu 10. Cho đường cong (C): y = x2. Phương trình tiếp tuyến của (C) tại điểm M(–1; 1) là:

A. y = –2x + 1                 B. y = 2x + 1.                       C. y = –2x – 1                   D. y = 2x – 1

Câu 11. Cho hàm số y = \[\frac{1}{3}\]x3 – 3x2 + 7x + 2. Phương trình tiếp tuyến tại A(0; 2) là:

A. y = 7x +2.                   B. y = 7x – 2                        C. y = –7x + 2                   D. y = –7x –2

Câu 12. Gọi (C) là đồ thị của hàm số y = x4 + x. Tiếp tuyến của (C) vuông góc với đường thẳng d: x +  5y = 0 có phương trình là:

A. y = 5x – 3.                  B. y = 3x – 5                        C. y = 2x – 3                     D. y = x + 4

Câu 13. Cho hàm số f(x) xác định trên R bởi f(x) =\[\sqrt{{{x}^{2}}}\]. Giá trị f/(0) bằng:

A. 0                                 B. 2                                      C. 1                                   D. Không tồn tại.

Câu 14. Đạo hàm cấp 1của hàm số y = (1–x3)5 là:

A. y/ = 5(1–x3)4               B. y/ = –15(1–x3)4.                C. y/ = –3(1–x3)4               D. y/ = –5(1–x3)4

Câu 15. Đạo hàm của hàm số f(x) = (x2 + 1)4 tại điểm x = –1 là:

A. –32                             B. 30                                    C. –64.                              D. 12

Câu 16. Cho hàm số y = x3 – 3x2 – 9x – 5. Phương trình y/ = 0 có nghiệm là:

A. {–1; 2}       B. {–1; 3}.      C. {0; 4}         D. {1; 2}

Câu 17. Cho hàm số f(x) xác định trên R bởi f(x) \[=\sqrt[3]{x}\].Giá trị f/(–8) bằng:

A. \[\frac{1}{12}\].          B. –\[\frac{1}{12}\]             C. \[\frac{1}{6}\]               D. –\[\frac{1}{6}\]

Câu 18. Cho hàm số f(x) xác định trên R \{1} bởi \[f(x)=\frac{2x}{x-1}\]. Giá trị f/(–1) bằng:

A. \[\frac{1}{2}\].            B. – \[\frac{1}{2}\]              C. –2                                 D. Không tồn tại

Câu 19. Cho hàm số f(x) xác định trên R bởi f(x) = –2x2 + 3x. Hàm số có đạo hàm f/(x) bằng:

A. –4x – 3                       B. –4x +3.                            C. 4x + 3                           D. 4x – 3

Câu 20. Cho hàm số y = f(x) = (ax+b)5 (a, b là tham số). Tính f(10)(1)

A.  f(10)(1)=0                    B. f(10)(1) = 10a + b              C. f(10)(1) = 5a                   D. f(10)(1)= 10a

Câu 21. Cho hàm số f(x)=\[k\sqrt[3]{x}+\sqrt{x}\,\,(k\in R)\]. Để f/(1)=\[\frac{3}{2}\]thì ta chọn:

A. k = 1                           B. k = –3                              C. k = 3.                            D. k = \[\frac{9}{2}\]

Câu 22. Hàm số \[y=\frac{x}{x-2}\]có đạo hàm cấp hai là:

A. y// = 0                          B. \[{{y}^{//}}=\frac{1}{{{\left( x-2 \right)}^{2}}}\]      C. \[{{y}^{//}}=-\frac{4}{{{\left( x-2 \right)}^{2}}}\]          D. \[{{y}^{//}}=\frac{4}{{{\left( x-2 \right)}^{2}}}\].

Câu 23. Hàm số y = (x2 + 1)3 có đạo hàm cấp ba là:

A. y/// = 12(x2 + 1)                B. y/// = 24(x2 + 1)                C. y/// = 24(5x2 + 3).          D. y/// = –12(x2 + 1)

Câu 24. Cho hàm số f(x) = (2x+5)5. Có đạo hàm cấp 3 bằng:

A. f///(x) = 80(2x+5)3                                                    B. f///(x) = 480(2x+5)2.

C. f///(x) = –480(2x+5)2                                                D. f///(x) = –80(2x+5)3

Câu 25. Cho hàm số y = f(x) = \[-\frac{1}{x}\] xét 2 mệnh đề:

(I): y// = f//(x) = \[\frac{2}{{{x}^{3}}}\]                          (II): y/// = f///(x) = \[-\frac{6}{{{x}^{4}}}\].

Mệnh đề nào đúng:

A. Chỉ (I)                         B. Chỉ (II) đúng                   C. Cả hai đều đúng           D. Cả hai đều sai.

 

Câu 26. Cho hàm số y = f(x) = (ax+b)5 (a, b là tham số). Tính f(10)(1)

A.  f(10)(1)=0.                   B. f(10)(1) = 10a + b              C. f(10)(1) = 5a                   D. f(10)(1)= 10a

Câu 27. Cho hàm số f(x) = –x4 + 4x3 – 3x2 + 2x + 1 xác định trên R. Giá trị f/(–1) bằng:

A. 4                                 B. 14                                    C. 15                                 D. 24.

Câu 28. Cho hàm số f(x) = \[-1+\frac{1}{\sqrt[3]{x}}\] xác định R*. Đạo hàm của hàm số f(x) là:

A. f/(x) = \[-\frac{1}{3}x\sqrt[3]{x}\]            B. f/(x) = \[\frac{1}{3}x\sqrt[3]{x}\]       C. f/(x) = \[-\frac{1}{3x\sqrt[3]{x}}\].                                           D. f/(x) = \[-\frac{1}{3x\sqrt[3]{{{x}^{2}}}}\]

Câu 29. Với \[f(x)=\frac{{{x}^{2}}-2x+5}{x-1}\]. f/(x) bằng:

A. 1                                 B. –3.                                   C. –5                                 D. 0

Câu 30. Cho hàm số \[y=f(x)=\frac{x}{\sqrt{4-{{x}^{2}}}}\]. Tính y/(0) bằng:

A. y/(0)= \[\frac{1}{2}\].                                             B. y/(0)= \[\frac{1}{3}\]   C. y/(0)=1        D. y/(0)=2

 

Đáp án:

1.C

2.D

3.B

4.B

5.A

6.C

7.A

8.B

9.D

10.B

11.A

12.A

13.D

14.B

15.C

16.B

17.A

18.A

19.B

20.A

21.C

22.D

23.C

24.B

25.D

26.A

27.D

28.C

29.B

30.A

Chúc các bạn học tốt.

Bài viết gợi ý: