1. Bất phương trình một ẩn
Bất phương trình ẩn x là hệ thức A(x) > B(x) hoặc A(x) < B(x) hoặc A(x) ≥ B(x) hoặc A(x) ≤ B(x).
Trong đó: A(x) gọi là vế trái; B(x) gọi là vế phải.
Nghiệm của bất phương trình là giá tri của ẩn thay vào bất phương trình ta được một khẳng định đúng.
2. Tập nghiệm của bất phương trình
Tập hợp tất cả các nghiệm của bất phương trình được gọi là tập nghiệm của bất phương trình đó.
3. Bất phương trình tương đương
Hai bất phương trình tương đương là hai bất phương trình có cùng tập nghiệm,
Kí hiệu: <=>
Bài Tập
Bài 19 - 26 trang 47 sgk toán 8 tập 2
Giải các bất phương trình theo quy tắc chuyển vế:
a) x - 5 > 3; b) x - 2x < -2x + 4;
c) -3x > -4x + 2; d) 8x + 2 < 7x - 1.
Hướng dẫn giải:
a) x - 5 > 3 <=> x > 5 + 3 <=> x > 8
Vậy nghiệm của bất phương trình là x > 8
b) x - 2x < -2x + 4 <=> x - 2x + 2x < 4 <=> x < 4
Vậy nghiệm của bất phương trình là x < 4
c) -3x > -4x + 2 <=> -3x + 4x > 2 <=> x > 2
Vậy nghiệm của bất phương trình là x > 2
d) 8x + 2 < 7x - 1 <=> 8x - 7x < -1 -2 <=> x < -3
Vậy nghiệm của bất phương trình là x < -3
Bài 21. Giải thích sự tương đương sau:
a) x - 3 > 1 <=> x + 3 > 7; b) -x < 2 <=> 3x > -6
Hướng dẫn giải:
a) x - 3 > 1 <=> x + 3 > 7
Hai bất phương trình tương đương vì cộng 6 vào cả hai vế.
b) -x < 2 <=> 3x > -6
Hai bất phương trình tương đương vì nhân -3 vào cả hai vế và đổi dấu bất phương trình.
Bài 24. Giải các bất phương trình:
a) 2x - 1 > 5; b) 3x - 2 < 4;
c) 2 - 5x ≤ 17; d) 3 - 4x ≥ 19.
Hướng dẫn giải:
a) 2x - 1 > 5 <=> 2x > 6 <=> x > 3
Vậy tập nghiệm của bất phương trình là x > 3
b) 3x - 2 < 4 <=> 3x < 6 <=> x < 2
Vậy tập nghiệm của bất phương trình là x < 2
c) 2 - 5x ≤ 17 <=> -5x ≤ 15 <=> -x ≤ 3 <=> x ≥ -3
Vậy tập nghiệm của bất phương trình là x ≥ -3
d) 3 - 4x ≥ 19 <=> -4x ≥ 16 <=> x ≤ -4
Vậy tập nghiệm của bất phương trình là x ≤ -4