1. Định nghĩa

Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh cắt đường tròn đó.

Cung nằm bên trong góc là cung bị chắn.

                  

Trong đường tròn tâm O ta có góc  BAC^\widehat{BAC} là góc nội tiếp, cung bị chắn là cung BC\overset\frown{BC}

2. Định lí

Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn

 BAC^\widehat{BAC}=12\frac{1}{2}BC\overset\frown{BC}

Chứng minh:

Trường hợp tâm O nằm bên trong góc BAC^\widehat{BAC}

                  

Vì tâm O nằm bên trong góc BAC^\widehat{BAC} nên tia  ADAD nằm giữa hai tia ABABACAC, ta có:

BAC^=BAD^+DAC^\widehat{BAC}=\widehat{BAD}+\widehat{DAC}

BC\overset\frown{BC}=sđ DC\overset\frown{DC}+sđ BD\overset\frown{BD}

BAD^\widehat{BAD}=12\frac{1}{2}BD\overset\frown{BD}; DAC^\widehat{DAC}=12\frac{1}{2}DC\overset\frown{DC}. Suy ra BAC^=12(sBD+sDC)\widehat{BAC}=\frac{1}{2}(s\overset\frown{BD}+s\overset\frown{DC})

Vậy BAC^\widehat{BAC}=12\frac{1}{2}BC\overset\frown{BC}

Trường hợp O nằm trên một cạnh của góc BAC^\widehat{BAC} hoặc nằm ngoài góc BAC^\widehat{BAC} chứng minh tương tự

3. Hệ quả

Trong một đường tròn:

a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau.

b) Các góc nội tiếp chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.

c) Góc nội tiếp ( nhỏ hơn hoặc bằng 90° ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.

d) Góc nội tiếp chắn nửa đường tròn là góc vuông

Bài viết gợi ý: