Nghiệm của đa thức một biến
I.Lý thuyết:
1. Nghiệm của đa thức một biến
Cho đa thức P(x)
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức P(x).
2. Số nghiệm của đa thức một biến
Một đa thức (khác đa thức không) có thể có 1, 2, 3, ..., n nghiệm hoặc không có nghiệm nào.
Tổng quát: Số nghiệm của một đa thức (khác đa thức 0) không vượt qua bậc của nó.
II. Bài tập vận dụng:
Bài 1: x = -2; x = 0 và x = 2 có phải là các nghiệm của đa thức x3 – 4x hay không? Vì sao?
Lời giải
Giá trị của đa thức x3 – 4x tại x = -2 là: (-2)3 – 4.( - 2) = – 8 + 8 = 0
Giá trị của đa thức x3 – 4x tại x = 0 là: 03 – 4.0 = 0 – 0 = 0
Giá trị của đa thức x3 – 4x tại x = 2 là: 23 – 4.2 = 8 – 8 = 0
Vậy x = -2; x = 0 và x = 2 có phải là các nghiệm của đa thức x3 – 4x
(vì tại các giá trị đó của biến, đa thức có giá trị bằng 0)
Bài 2: Kiểm tra xem:
b) Mỗi số x = 1; x = 3 có phải là một nghiệm của đa thức Q(x) = x2 – 4x + 3 không.
Lời giải:
b) Ta có: Q(1) = 12 – 4.1 + 3 = 1 – 4 + 3 = 0
=> x = 1 là nghiệm của Q(x)
Q(3) = 32 – 4.3 + 3 = 9 – 12 + 3 = 0
=> x = 3 là nghiệm của Q(x)
Bài 3:
a) Tìm nghiệm của đa thức P(y) = 3y + 6.
b) Chứng tỏ rằng đa thức sau không có nghiệm: Q(x) = y4 + 2
Lời giải:
a) Ta có: P(x) = 3y + 6 có nghiệm khi:
3y + 6 = 0
3y = –6
y = –2
Vậy đa thức P(y) có nghiệm là y = –2.
b) Ta có: y4 ≥ 0 với mọi y.
Nên y4 + 2 > 0 với mọi y.
Tức là Q(y) ≠ 0 với mọi y.
Vậy Q(y) không có nghiệm. (đpcm)
(Giải thích: y4 có số mũ là số chẵn nên nó luôn có giá trị lớn hơn hoặc bằng 0. Kể cả khi bạn thay y bằng số âm vào. Ví dụ, thay y = -2 chẳng hạn thì y4 = (-2)4 = 16 là số dương.)
Bài 4: Cho đa thức f(x) = x2 – 4x – 5. Chứng tỏ rằng x = -1; x = 5 là hai nghiệm của đa thức đó.
Lời giải:
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Bài 5: Tìm nghiệm của các đa thức sau:
a, 2x + 10
b, 3x - 1/2
c, x2 – x
Lời giải:
a, Ta có: 2x + 10 = 0 ⇔ 2x = -10 ⇔ x = -10 : 2 ⇔ x = -5
Vậy x = -5 là nghiệm của đa thức 2x + 10
b, Ta có: 3x - 1/2 = 0 ⇔ 3x = 1/2 ⇔ x = 1/2 : 3 = 1/6
Vậy x = 1/6 là nghiệm của đa thức 3x - 1/2
c, Ta có: x2 – x = 0 ⇔ x(x – 1) = 0 ⇔ x = 0 hoặc x – 1 = 0
⇔ x = 0 hoặc x = 1
Vậy x = 0 và x = 1 là các nghiệm của đa thức x2 – x
III. Bài tập tự luyện:
Bài 1: Tìm nghiệm của các đa thức sau:
a. (x – 2)(x + 2)
b. (x – 1)(x2 + 1)
Bài 2: Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức ax2 + bx + c.
Bài 3: Chứng tỏ rằng nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức ax2 + bx + c
Bài 4: Chứng tỏ rằng đa thức x2 + 2x + 2 không có nghiệm
Bài 5: Đố em tìm được số mà:
a. Bình phương của nó bằng chính nó
b. Lập phương của nó bằng chính nó
Bài 6: Trong các số cho sau, với mỗi đa thức, số nào là nghiệm của đa thức?
\[a)P(x)=2x+\frac{1}{2}\] |
\[\frac{1}{4}\] |
\[\frac{1}{2}\] |
\[\frac{-1}{4}\] |
b) Q(x) = x2 – 2x -3 |
3 |
1 |
-1 |
Bài 7: Cho đa thức:
Tìm m sao cho x = -1 là một nghiệm của đa thức.
Bài 8: Chứng tỏ rằng nếu a = b + 1 thì x = -1 là nghiệm của đa thức:
Bài 9: Tìm nghiệm của đa thức 5x + 17 – (2x + 5).
Bài 10: Tìm nghiệm của đa thức 3(1 – x) – (5 – 2x).
Chúc các bạn học tốt.